Chapter 2. Introduction to Engineering Calculation

• General Approach to Scientific / Engineering Problems

- We have to deal with variables and equations (mathematical models).

Example of applications in chemical engineering

- Biotechnology
- Consulting
- Drugs and pharmaceuticals
- Fats and oils
- Fertilizers, agricultural
- Food, beverage
- Lime and cements
- Man -made fibers, synthetic resins and plastics
- Pesticide and herbicide
- Even politics , ...

2.1 Units and Dimensions

Dimensions : Basic concept of measurements Units : Means of expressing dimensions

_		•
F	v	۱
	^	,

Dimensions	Units
Length	m
	cm
	km
	ft
Time	hr
	s
	min

- Each measured quantities have values and units

ex) L = 1 m (value + unit)

* Manipulation of quantities

- You can add, subtract or equate quantities only if the units are the same
- You can multiply or divide unlike units.

2.2 Conversion of Units

 \rightarrow follow the examples

ex 2.2 -1) conversion 1 cm/s² \rightarrow km / yr²

1 cm	$3600^2 s^2$	242 hr ²	365 ² day ²	1 m	1 km
1 s ²	1 hr ²	1 day ²	1 yr ²	100 cm	1000 m
$0.05 \times 10^{9} \text{ km} / \text{ sm}^{2}$					

)

2.3 System of Units (

Base Units : units for mass, mole, length, time, temperature, electrical current, light intensity (7 dimensions)

Derived Units

- By multiplication and division of base or derived units
 - \rightarrow m/s, m³, m³/kg
- By definition

 \rightarrow 1 erg = g cm /s², 1 lbf = 32.174 lb_m ft / s²

SI Systems (Systeme Internationale d'Unites, 1960)

CGS Systems

Metric Systems

American engineering systems, English systems, British systems

Table.1 System of Units

	Dimension	SI	Metric	English
Base Units	Mass	kg	kg	lb _m
	Mole	kg -mol	kg -mol	lb -mol
	Length	m	m	ft
	Time	s	s	s
	Temperature	к	°C	°F
	Electrical Current	А	А	А
	Light Intensity	cd	cd	cd
Derived Units	Volume	m ³	m ³	ft ³
	Force	N	kg _f	lb _f
	Presure	Pa	kg/cm ²	psi
	Energy, Work	J	kcal	Btu
	Power	W	kcal/s	hp

CGS system \rightarrow cm, g, erg, dyne \rightarrow not used today

Three Important sources for unit conversion

- 1. "Perry's Chemical Engineer's Handbook"
- 2. NIST publication
- 3. Web site: thermo.korea.ac.kr \rightarrow KDB \rightarrow General DB \rightarrow Units

2.4 Force and Weight

Newton's second law

 $F = m a / g_c = m g / g_c$

If g varies, F also varies...

Definition of force units

1 N = 1 kg.m/s² 1 dyne = 1 g.cm/s² 1 lbf = 32.174 lb_m.ft / s² **Conversion factors**

$$g_c = 1 (kg.m/s^2) / N = 1 (g.cm/s^2) / dyne = 32.174 (lb_m.ft/s^2)/lb_f$$

Weight : force exerted by gravitational force

$$W = m g / g_c$$

Example 2.4 –1) $\rho = 62.4 lb_m / ft^3$, $g = 32.139 ft / s^2$

Weight of water 2 ft³ ?

$$M = \rho V = (62.4lb_m / ft^3) \times (2ft^3) = 124.8lb_m$$
$$W = m\frac{g}{g_c} = 124.8lb_m \times (32.139 ft/s^2) \times (\frac{lb_f}{32.174lb_m ft/s^2}) = 124.7lb_f$$

2.5 Dimensional Homogeneity and Dimensionless quantities

Dimensional Homogeneity

- Every equation must be dimensionally homogeneous

Ex) $V = V_0 + g t$ V : m/s V0 : m/s g : m/s² t : s \rightarrow Dimensionally homogeneous

 $V = V_0 + g \rightarrow Not valid$

Dimensionless quantities

Ex) M/M0 (ratio of molecular weight),
$$N_{RE} = \frac{DV\rho}{\mu}$$

2.6 Arithmetic Calculation

Scientific notation of numbers

123 000 000 \rightarrow 1.23×10⁸ or 1.230×10⁸

Significant digits -> indicate the precision of measured quantities

Number	Significant Digits	Range
2.3×10^{3}	2	2.25×10^3 to 2.35×10^3
2.30×10^{3}	3	2.295×10^3 to 2.305×10^3
2.300×10^{3}	4	2.2995×10^3 to 2.3005×10^3

Manipulation of numbers

×÷	ightarrow Use lowest number of significant figures
+-	ightarrow Use digits farthest to the left
-5	→ even – drop / odd – add 1

2.7 Process data representation and analysis

Process variables

- directly or indirectly measured quantities
- unknown quantities

Example of indirect measurement

Concentration vs. thermal conductivity

- Relation between Conc. And Thermal conductivity \rightarrow Calibration experiment

)

- ()

Interpolation and Extrapolation (