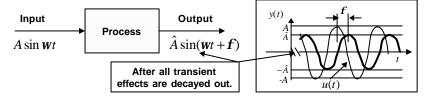
CHE302 LECTURE IX FREQUENCY RESPONSES

Professor Dae Ryook Yang

Fall 2001 Dept. of Chemical and Biological Engineering KoreaUniversity

CHE302	Process	Dynamics	and	Control
OLIFORT	11000033	Dynamios	unu	00111101

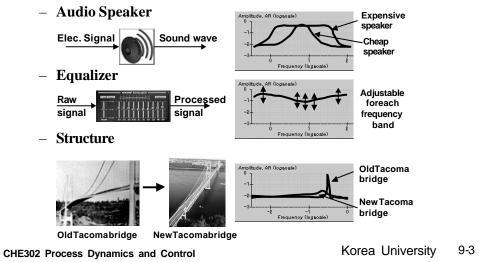

Korea University 9-1

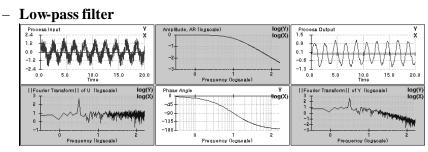
DEFINITION OF FREQUENCY RESPONSE

• Forlinearsystem

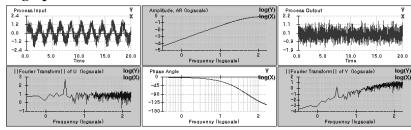
CHE302 Process Dynamics and Control

 "The ultimate output response of a process for a sinusoidal input at a frequency will show amplitude change and phase shift at the same frequency depending on the process characteristics."



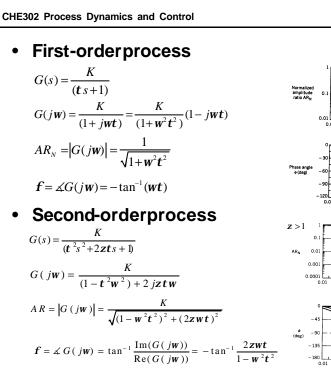

- Amplitude ratio (AR): attenuation of amplitude, \hat{A}/A
- Phase angle (f): phase shift compared to input
- These two quantities are the function of frequency.

9-2

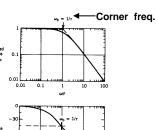

BENEFITS OF FREQUENCY RESPONSE

• Frequencyresponsesaretheinformative representationsofdynamicsystems

- High-pass filter

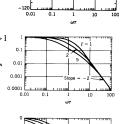


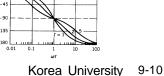
- In signal processing field, transfer functions are called "filters".

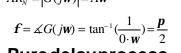

 Any linear dynamical system is completely defined by its frequency response. The AR and phase angle define the system completely. Bode diagram AR in log-log plot Phase angle in log-linear plot Via efficient numerical technique (fast Fourier transform, FFT), the output can be calculated for any type of input. Frequency response representation of a system dynamics is very convenient for designing a feedback controller and analyzing a closed-loop system. Bode stability Gain margin (GM) and phase margin (PM) 	<text><text><image/><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></text></text>
CHE302 Process Dynamics and Control Korea University 9-5	CHE302 Process Dynamics and Control Korea University 9-7
 Criticalfrequency As controller gain changes, the amplitude ratio (AR) and the phase angle (PA) change. The frequency where the PA reaches -180° is calledcritical frequency (W_c). The component of output at the critical frequency will have the exactly same phase as the signal goes through the loop due to comparator (-180°) and phase shift of the process (-180°). For the open-loop gain at the critical frequency, K_{OL} (W_c) = 1 No change in magnitude Continuous cycling For K_{OL} (W_c) > 1 Getting bigger in magnitude Unstable For K_{OL} (W_c) < 1 Getting smaller in magnitude Stable 	<section-header><section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></section-header></section-header></section-header>

Gettingultimateresponse

- For a sinusoidal forcing function $Y(s) = G(s) \frac{AW}{s^2 + w^2}$ - Assume G(s) has stable poles b_i . Decayedoutatlarget $Y(s) = G(s) \frac{Aw}{s^{2} + w^{2}} = \frac{a_{1}}{s + b} + \dots + \frac{a_{n}}{s + b} + \frac{Cs + Dw}{s^{2} + w^{2}}$ $G(j\mathbf{w})A\mathbf{w} = Cj\mathbf{w} + D\mathbf{w} \Rightarrow G(j\mathbf{w}) = \frac{D}{A} + j\frac{C}{A} = R + jI$ $C = IA, D = RA \implies y_{ul} = A(k \cos wt + R \sin wt) = \hat{A} \sin(wt + f)$ $\therefore AR = \hat{A}/A = \sqrt{R^2 + I^2} = |G(jw)|$ and $f = \tan^{-1}(I/R) = \measuredangle G(jw)$
- Without calculating transient response, the frequency response can be obtained directly from G(jw).
- Unstable transfer function does not have a frequency response because a sinusoidal input produces an unstable output response.

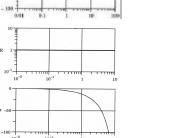



CHE302 Process Dynamics and Control


Korea University

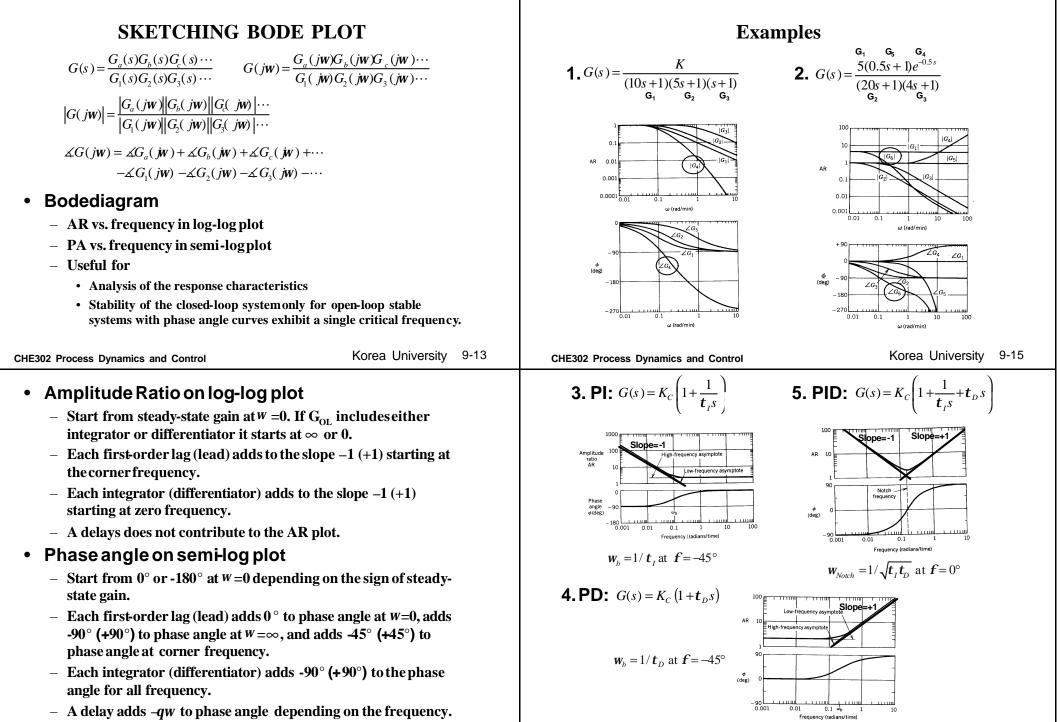
9-9

 Process Zero (lead) $G(s) = t_a s + 1$ An mailed employees $G(i\mathbf{w}) = 1 + i\mathbf{w}\mathbf{t}$ $AR_N = |G(jw)| = \sqrt{1 + w^2 t_a^2}$ $f = \measuredangle G(jw) = \tan^{-1}(wt)$ Unstablepole $G(s) = \frac{1}{(s+1)}$ Annalised employees $G(jw) = \frac{1}{1 - itw} = \frac{1}{1 + t^2 w^2} (1 + jtw)$ $AR = \left| G(j\mathbf{w}) \right| = \frac{1}{\sqrt{1 + \mathbf{w}^2 t^2}}$ Photop $\boldsymbol{f} = \measuredangle G(j\boldsymbol{w}) = \tan^{-1} \frac{\operatorname{Im}(G(j\boldsymbol{w}))}{\operatorname{Re}(G(j\boldsymbol{w}))} = \tan^{-1} \boldsymbol{w}\boldsymbol{t}$ Korea University 9-11 CHE302 Process Dynamics and Control Integratingprocess $G(s) = \frac{1}{As} \quad G(jw) = \frac{1}{iAw} = -\frac{1}{Aw}j$ $AR_N = |G(jw)| = \frac{1}{4\pi m}$ $f = \measuredangle G(jw) = \tan^{-1}(-\frac{1}{0}) = -\frac{p}{2}$ Differentiator G(s) = As G(iw) = iAw $AR_{N} = |G(jw)| = Aw$



 Puredelay process $G(s) = e^{-qs}$

$$G(jw) = e^{-jqw} = \cos qw - j\sin qw$$


AR = |G(jw)| = 1

 $f = \measuredangle G(iw) = -\tan^{-1}\tan qw = -qw$ **CHE302 Process Dynamics and Control**

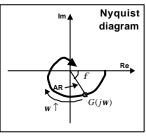
Korea University

9-12

CHE302 Process Dynamics and Control

CHE302 Process Dynamics and Control

Korea University 9-14


Korea University 9-16

NYQUIST DIAGRAM

- Alternativerepresentationoffrequencyresponse
- Polar plot of G(jw) (w is implicit)

 $G(j\mathbf{w}) = \operatorname{Re}[G(j\mathbf{w})] + j \operatorname{Im}[G(j\mathbf{w})]$

- Compact (one plot)
- Wider applicability of stability analysis than Bode plot

- High frequency characteristics will be shrunk near the origin.
 - Inverse Nyquist diagram polar plot of 1/G (jw)
- Combination of different transfer function components is not easy as with Nyquist diagram as with Bode plot.

CHE302 Process Dynamics and Control

Korea University 9-17