CHE302 LECTURE IX FREQUENCY RESPONSES

Professor Dae Ryook Yang

Fall 2001 Dept. of Chemical and Biological Engineering Korea University

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEXT AND RESERVENT CHEFT OF ST

DEFINITION OF FREQUENCY RESPONSE

• **For linear system**

– **"The ultimate output response of a process for a sinusoidal input at a frequency will show amplitude change and phase shift at the same frequency depending on the process characteristics."**

- $-$ Amplitude ratio (AR): attenuation of amplitude, \hat{A}/A
- $-$ Phase angle (f) : phase shift compared to input
- **These two quantities are the function of frequency.**

BENEFITS OF FREQUENCY RESPONSE

• **Frequency responses are the informative representations of dynamic systems**

• **Any linear dynamical system is completely defined by its frequency response.**

- **The AR and phase angle define the system completely.**
- **Bode diagram**
	- **AR in log-log plot**
	- **Phase angle in log-linear plot**
- **Via efficient numerical technique (fast Fourier transform, FFT), the output can be calculated for any type of input.**
- **Frequency response representation of a system dynamics is very convenient for designing a feedback controller and analyzing a closed-loop system.**
	- **Bode stability**
	- **Gain margin (GM) and phase margin (PM)**

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTROL Korea University 9-5

• **Critical frequency**

- **As controller gain changes, the amplitude ratio (AR) and the phase angle (PA) change.**
- **The frequency where the PA reaches –180°is called critical** ${\bf frequency}\left (\stackrel{\bullet}{W_c} \right)$.
- **The component of output at the critical frequency will have the exactly same phase as the signal goes through the loop due to comparator (-180 °) and phase shift of the process (-180 °).**
- \blacktriangleright **For the open-loop gain at the critical frequency,** $K_{OL}(\mathbf{w}_c) = 1$
	- **No change in magnitude**
	- **Continuous cycling**
- $-$ **For** $K_{OL}(w_c) > 1$
	- **Getting bigger in magnitude**
	- **Unstable**
- $-$ **For** $K_{OL}(w_c) < 1$
	- **Getting smaller in magnitude**
	- **Stable**

• **Example**

– **If a feed is pumped by a peristaltic pump to a CSTR, will the fluctuation of the feed flow appear in the output?**

• **From the transfer function, replace** *s* **with** *jw*

 $G(s)$ $\xrightarrow{s=jw} G(jw)$

Transfer function Frequency response

- $-$ For a pole, $s = a + jw$, the response mode is $e^{(a+jw)t}$.
- $-$ If the modes are not unstable ($a \le 0$) and enough time elapses, the survived modes becomes e^{jwt} . (ultimate response)
- The frequency response, $G(jw)$ is complex as a **function of frequency. Im Nyquist**

• **Getting ultimate response**

- For a sinusoidal forcing function
$$
Y(s) = G(s) \frac{Aw}{s^2 + w^2}
$$

\n- Assume $G(s)$ has stable poles b_i ,
\n
$$
Y(s) = G(s) \frac{Aw}{s^2 + w^2} = \frac{a_1}{s + b_1} + \dots + \frac{a_n}{s + b_n} + \frac{Cs + Dw}{s^2 + w^2}
$$
\n
$$
G(jw)Aw = Cjw + Dw \Rightarrow G(jw) = \frac{D}{A} + j\frac{C}{A} = R + jI
$$
\n
$$
C = IA, D = RA \Rightarrow y_{ul} = A(I \cos wt + R \sin wt) = \hat{A} \sin(wt + f)
$$
\n∴ $AR = \hat{A}/A = \sqrt{R^2 + I^2} = |G(jw)|$ and $f = \tan^{-1}(I/R) = \angle G(jw)$

- **Without calculating transient response, the frequency response** can be obtained directly from $G(jw)$.
- **Unstable transfer function does not have a frequency response because a sinusoidal input produces an unstable output response.**

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEXT AND RESERVENT CHEFT OF ST

• **First-order process Corner freq.***K* = *G s* $\left(s\right)$ $(t s+1)$ *t s* + $G(jw) = \frac{K}{(x-1)^2} = \frac{K}{(x-1)^2} (1-j)^2$ $(jw) = \frac{R}{(1 + jwt)} = \frac{R}{(1 + w^2t^2)}(1 - jwt)$ $w = \frac{R}{(1+i)^2} = \frac{R}{(1+i)^2} (1-i)wt$ $=\frac{R}{(1-\frac{R}{c})^2}=\frac{R}{(1-\frac{R}{c})^2}$ 0.01 + jwt) (1+ *j wt* $(1 + w^2t)$ 0.1 0.01 1 $AR_{N} = |G(jw)|$ $= |G(jw)| =$ (jw) $2 + 2$ 1 + w^2t $f = \measuredangle G(jw) = -\tan^{-1}(wt)$ • **Second-order process** *z* > 1 $G(s) = \frac{K}{(s-1)^2 + 2s}$ $(s) = \frac{R}{(t^2s^2 + 2zts + 1)}$ = $\frac{1}{2}s^2 + 2zts$ $+2zts +$ AR_N 0.01 0.00 *K G j* $(jw) = \frac{1}{(1 - t^2 w^2) + 2}$ *w* = 0.0001 $\sum_{0.01}$ $- t^2 w^2 +$ t^2w^2) + 2 *jztw j* $AR = |G(jw)| = \frac{K}{\sqrt{g(jw)}}$ $= |G(jw)| =$ (yw) = $\frac{R}{(1 - w^2 + w^2)^2 + (2 \pi w t)^2}$ $(1 - w^2 t^2)^2 + (2 z w t)$ $- w^2 t^2)^2 +$ $w^{2}t^{2})^{2}$ + (2*zwt*) $\frac{\phi}{(\text{deg})}$ -90 $f = \measuredangle G(jw) = \tan^{-1} \frac{\text{Im}(G(jw))}{\sqrt{g}} = -\tan^{-1} \frac{2zwt}{\sqrt{g}}$ $G(jw) = \tan^{-1} \frac{\text{Im}(G(j))}{\sqrt{G(j)}}$ $(j w) = \tan^{-1} \frac{\text{Im}(G(j w))}{\text{Po}(G(j w))} = -\tan^{-1} \frac{2zwt}{1 - w^2 t^2}$ $=\angle G(jw) = \tan^{-1} \frac{\text{Im}(G(jw))}{\sqrt{1 - \frac{1}{2} m^2}} = -\tan^{-1}$ 1 $\text{III}(U(N)) = \text{tan}^{-1}$ $\angle G(jw) = \tan^{-1} \frac{\text{Im}(G(jw))}{\text{Re}(G(jw))} = -\tan^{-1} \frac{2}{1-w}$ -180 $Re(G(jw))$ 1 *G j w* $)$ $1 - w^2t$ **CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEXT AND RESERVENT CHEFT CHE**

 $G(s) = t_a s + 1$

$$
G(jw) = 1 + jwt_a
$$

$$
AR_{N} = |G(jw)| = \sqrt{1 + w^{2}t_{a}^{2}}
$$

$$
\mathbf{f} = \measuredangle G(\mathbf{j} \mathbf{w}) = \tan^{-1}(\mathbf{w} \mathbf{t}_a)
$$

• **Unstable pole**

$$
G(s) = \frac{1}{(-ts+1)}
$$

\n
$$
G(jw) = \frac{1}{1 - jtw} = \frac{1}{1 + t^2 w^2} (1 + jtw)
$$

\n
$$
AR = |G(jw)| = \frac{1}{\sqrt{1 + w^2 t^2}}
$$

\n
$$
f = \angle G(jw) = \tan^{-1} \frac{\text{Im}(G(jw))}{\text{Re}(G(jw))} = \tan^{-1} wt
$$

SKETCHING BODE PLOT

• **Bode diagram**

- **AR vs. frequency in log-log plot**
- **PA vs. frequency in semi-log plot**
- **Useful for**
	- **Analysis of the response characteristics**
	- **Stability of the closed-loop system only for open-loop stable systems with phase angle curves exhibit a single critical frequency.**

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control

• **Amplitude Ratio on log-log plot**

- $-$ Start from steady-state gain at $w = 0$. If G_{OL} includes either integrator or differentiator it starts at ∞ or 0 .
- **Each first-order lag (lead) adds to the slope –1 (+1) starting at the corner frequency.**
- **Each integrator (differentiator) adds to the slope –1 (+1) starting at zero frequency.**
- **A delays does not contribute to the AR plot.**

• **Phase angle on semi-log plot**

- $-$ Start from 0° or -180° at $w=0$ depending on the sign of steady**state gain.**
- $-$ Each first-order lag (lead) adds 0° to phase angle at $w=0$, adds -90° (+90°) to phase angle at $W = \infty$, and adds -45° (+45°) to **phase angle at corner frequency.**
- **Each integrator (differentiator) adds -90° (+90°) to the phase angle for all frequency.**

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEXT METAL RESERVING CHECK - A delay adds $-qw$ to phase angle depending on the frequency.

NYQUIST DIAGRAM

- **Alternative representation of frequency response**
- Polar plot of $G(jw)$ (w is implicit)

 $G(jw) = \text{Re}[G(jw)] + j \text{Im}[G(jw)]$ diagram

- **Compact (one plot)**
- **Wider applicability of stability analysis than Bode plot**
- **High frequency characteristics will be shrunk near the origin.**

- Inverse Nyquist diagram: polar plot of $1/G(jw)$
- **Combination of different transfer function components is not** easy as with Nyquist diagram as with Bode plot.

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEXT METALLY RESISTENT CHEFT