CHE302 LECTURE VI DYNAMIC BEHAVIORS OF REPRESENTATIVE PROCESSES

Professor Dae Ryook Yang

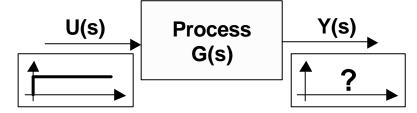
Fall 2001

Dept. of Chemical and Biological Engineering

Korea University

REPRESENTATIVE TYPES OF RESPONSE

For step inputs



Y(t)	Type of Model, G(s)
	Nonzero initial slope, no overshoot or nor oscillation, 1st ordermodel
	1st order+Time delay
	Underdamped oscillation, 2 nd or higher order
	Overdamped oscillation, 2 nd or higher order
	Inverse response, negative (RHP) zeros
	Unstable, no oscillation, real RHP poles
↑	Unstable, oscillation, complex RHP poles
	Sustained oscillation, pure imaginary poles

1ST ORDER SYSTEM

First-order linear ODE (assume all deviation variables)

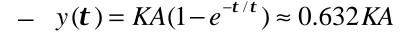
$$t \frac{dy(t)}{dt} = -y(t) + Ku(t) \xrightarrow{\perp} (ts+1)Y(s) = KU(s)$$

• Transfer function:
$$\frac{Y(s)}{U(s)} = \frac{K}{(ts+1)} \xrightarrow{\text{Gain }} \text{Time constant}$$

Step response:

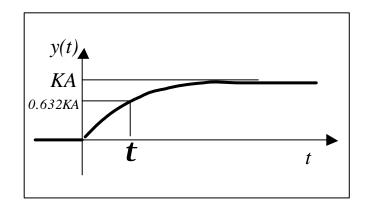
With
$$U(s) = A/s$$
,

$$Y(s) = \frac{KA}{s(ts+1)} \xrightarrow{\perp} y(t) = KA(1 - e^{-t/t})$$



-
$$KA(1-e^{-t/t}) \ge 0.99KA \Rightarrow t \approx 4.6t$$
 (Settling time= $4t \sim 5t$)

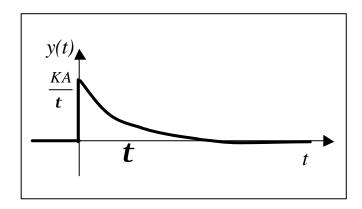
$$-y'(0) = KAe^{-t/t}/t\Big|_{t=0} = KA/t \neq 0 \quad \text{(Nonzero initial slope)}$$



• Impulse response

With
$$U(s) = A$$
,

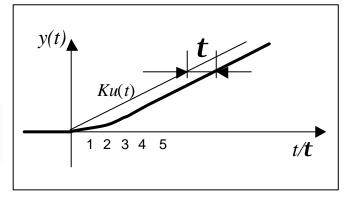
$$Y(s) = \frac{KA}{(t + 1)} \xrightarrow{\perp} y(t) = \frac{KA}{t} e^{-t/t}$$



Ramp response

With
$$U(s) = a/s^2$$
,

$$Y(s) = \frac{Ka}{s^{2}(t + 1)} \xrightarrow{\perp} y(t) = Kat e^{-t/t} + Ka(t - t)$$

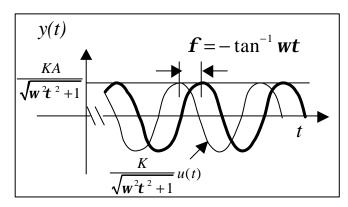


Sinusoidal response

With
$$U(s) = L[A \sin \mathbf{w}t] = \mathbf{w}/(s^2 + \mathbf{w}^2)$$
,

$$Y(s) = \frac{KA\mathbf{w}}{(\mathbf{t}s+1)(s^2+\mathbf{w}^2)} \longrightarrow$$

$$y(t) = \frac{KA}{\mathbf{w}^2 \mathbf{t}^2 + 1} (\mathbf{w} \mathbf{t} e^{-t/t} - \mathbf{w} \mathbf{t} \cos \mathbf{w} t + \sin \mathbf{w} t)$$



• Ultimate sinusoidal response $(t \rightarrow \infty)$

$$y_{\infty}(t) = \lim_{t \to \infty} \frac{KA}{\mathbf{w}^{2}t^{2} + 1} (\mathbf{w}te^{-t/t} - \mathbf{w}t \cos \mathbf{w}t + \sin \mathbf{w}t)$$

$$= \frac{KA}{\mathbf{w}^{2}t^{2} + 1} (-\mathbf{w}t \cos \mathbf{w}t + \sin \mathbf{w}t)$$

$$= \frac{KA}{\mathbf{w}^{2}t^{2} + 1} \sin(\mathbf{w}t + \mathbf{f}) \qquad (\mathbf{f} = -\tan^{-1}\mathbf{w}t)$$
Phase angle
Amplitude

- The output has the same period of oscillation as the input.
- But the amplitude is attenuated and the phase is shifted.

Normalized Amplitude Ratio
$$=\frac{1}{\sqrt{w^2t^2+1}} < 1$$
 Phase angle $= -\tan^{-1} wt$

 High frequency input will be attenuated more and phase is shifted more.

BODE PLOT FOR 1ST ORDER SYSTEM

AR plot asymptote

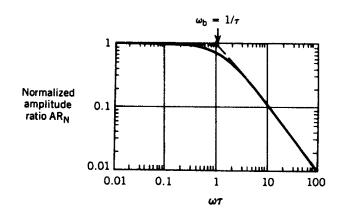
$$AR_N(\mathbf{w} \to 0) = \lim_{\mathbf{w} \to 0} \frac{1}{\sqrt{\mathbf{w}^2 t^2 + 1}} = 1$$

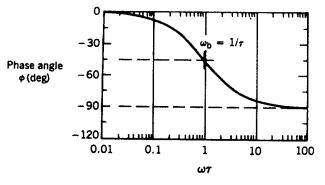
$$AR_N(\mathbf{w} \to \infty) = \lim_{\mathbf{w} \to \infty} \frac{1}{\sqrt{\mathbf{w}^2 \mathbf{t}^2 + 1}} = \frac{1}{\mathbf{w}\mathbf{t}}$$

Phase plot asymptote

$$f(\mathbf{w} \to 0) = -\lim_{\mathbf{w} \to 0} \tan^{-1} \mathbf{w} \mathbf{t} = 0^{\circ}$$

$$f(\mathbf{w} \to \infty) = -\lim_{\mathbf{w} \to \infty} \tan^{-1} \mathbf{w} \mathbf{t} = -90^{\circ}$$





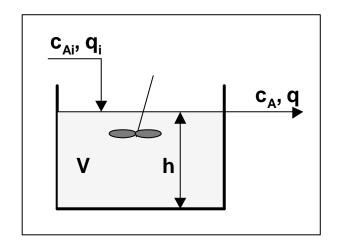
It is also called "low-pass filter"

1ST ORDER PROCESSES

Continuous Stirred Tank

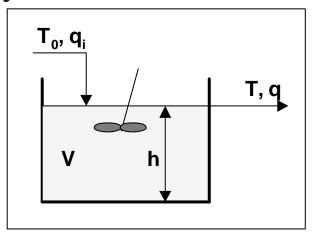
$$V\frac{dc_A}{dt} = qc_{Ai} - qc_A$$

$$\frac{C_A(s)}{C_{Ai}(s)} = \frac{q}{Vs + q} = \frac{1}{(V/q)s + 1}$$



With constant heat capacity and density

$$\mathbf{r}VC_{p} \frac{d(T - T_{ref})}{dt} = \mathbf{r}qC_{p}(T_{0} - T_{ref})$$
$$-\mathbf{r}qC_{p}(T - T_{ref})$$
$$\frac{T(s)}{T_{0}(s)} = \frac{q}{Vs + q} = \frac{1}{(V/q)s + 1}$$



INTEGRATING SYSTEM

•
$$\frac{dy(t)}{dt} = Ku(t) \xrightarrow{\perp} sY(s) = KU(s)$$

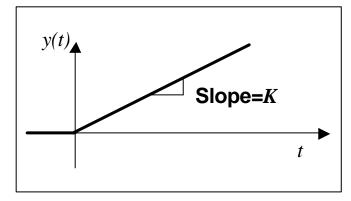
• Transfer Function: $\frac{Y(s)}{U(s)} = \frac{K}{s}$

$$\frac{Y(s)}{U(s)} = \frac{K}{s}$$

Step Response

With
$$U(s) = 1/s$$
,

$$Y(s) = \frac{K}{s^2} \xrightarrow{\perp} y(t) = Kt$$



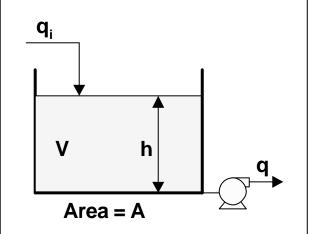
- The output is an integration of input.
- Impulse response is a step function.
- Non self-regulating system

INTEGRATING PROCESSES

- Storage tank with constant outlet flow
 - Outlet flow is pumped out by a constant-speed, constant-volume pump
 - Outlet flow is not a function of head.

$$A\frac{dh}{dt} = q_i - q$$

$$\frac{H(s)}{Q_i(s)} = \frac{1}{As} \qquad \frac{H(s)}{Q(s)} = -\frac{1}{As}$$



2ND ORDER SYSTEM

2nd order linear ODE

$$\mathbf{t}^2 \frac{d^2 y(t)}{dt^2} + 2\mathbf{z}\mathbf{t} \frac{dy(t)}{dt} + y(t) = Ku(t) \xrightarrow{\perp} (\mathbf{t}^2 s^2 + 2\mathbf{z}\mathbf{t} s + 1)Y(s) = KU(s)$$

Transfer Function:

$$\frac{Y(s)}{U(s)} = \frac{K}{(t^2 s^2 + 2zt s + 1)}$$
 Gain
Time constant
Damping Coefficient

Step response

- Varies with the type of roots of denominator of the TF.
 - Real part of roots should be negative for stability: $z \ge 0$
 - Two distinct real roots (z > 1): overdamped (no oscillation)
 - Double root (z = 1): critically damped (no oscillation)
 - Complex roots ($0 \le z < 1$): underdamped (oscillation)

• Case I
$$(z > 1)$$
 with $U(s)=1/s$

$$Y(s) = \frac{K}{s(t^{2}s^{2} + 2zts + 1)} = \frac{K}{s(t_{1}s + 1)(t_{2}s + 1)} \xrightarrow{\perp} y(t) = K \left(1 - \frac{t_{1}e^{-t/t_{1}} - t_{2}e^{-t/t_{2}}}{(t_{1} - t_{2})}\right)$$

$$\Rightarrow y(t) = K \left(1 - \frac{\mathbf{t}_1 e^{-t/\mathbf{t}_1} - \mathbf{t}_2 e^{-t/\mathbf{t}_2}}{(\mathbf{t}_1 - \mathbf{t}_2)} \right)$$

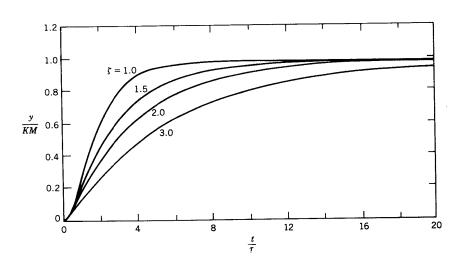
• Case II (z = 1)

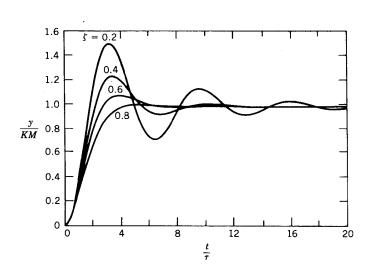
$$Y(s) = \frac{K}{s(t^2s^2 + 2ts + 1)} = \frac{K}{s(ts + 1)^2} \xrightarrow{\square} y(t) = K \left[1 - \left(1 + t/t \right) e^{-t/t} \right]$$

Case III $(0 \le z < 1)$

Natural frequency

$$Y(s) = \frac{K}{s(t^2s^2 + 2ts + 1)} \xrightarrow{\square} y(t) = K \left[1 - e^{-zt/t} \left\{ \cos at + \frac{z}{at} \sin at \right\} \right] \quad (a = \frac{\sqrt{1 - z^2}}{t})$$





Ultimate sinusoidal response

With
$$U(s) = L[A \sin wt]$$
,

$$Y(s) = \frac{KA\mathbf{w}}{(\mathbf{t}^2 s^2 + \mathbf{t} s + 1)(s^2 + \mathbf{w}^2)} \longrightarrow$$

$$y(t) = \frac{KA}{\sqrt{(1 - \mathbf{w}^2 \mathbf{t}^2)^2 + (2\mathbf{z}\mathbf{w}\mathbf{t})^2}} \sin(\mathbf{w}t + \mathbf{f}) \qquad (\mathbf{f} = -\tan^{-1}\frac{2\mathbf{z}\mathbf{w}\mathbf{t}}{1 - \mathbf{w}^2 \mathbf{t}^2})$$

Other method to find ultimate sinusoidal response

For $(s + \mathbf{a} + j\mathbf{w})$, y(t) has $e^{-(\mathbf{a} + j\mathbf{w})t}$ and it becomes $e^{-j\mathbf{w}t}$ as $t \to \infty$ $(\mathbf{a} > 0)$.

$$G(s) = \frac{K}{(t^2s^2 + 2zts + 1)} \xrightarrow{s \to jw} G(jw) = \frac{K}{(1 - t^2w^2) + 2jztw}$$

$$AR = |G(j\mathbf{w})| = \left| \frac{K}{(1 - t^2 \mathbf{w}^2) + jt\mathbf{w}} \right| = \frac{K}{\sqrt{(1 - \mathbf{w}^2 t^2)^2 + (2z\mathbf{w}t)^2}}$$

$$\mathbf{f} = \measuredangle G(j\mathbf{w}) = \tan^{-1} \frac{\operatorname{Im}(G(j\mathbf{w}))}{\operatorname{Re}(G(j\mathbf{w}))} = -\tan^{-1} \frac{2\mathbf{z}\mathbf{w}\mathbf{t}}{1 - \mathbf{w}^2\mathbf{t}^2}$$

BODE PLOT FOR 2ND ORDER SYSTEM

AR plot

$$AR_N(\mathbf{w} \to \infty) = \lim_{\mathbf{w} \to \infty} \frac{1}{\sqrt{(1 - \mathbf{w}^2 t^2)^2 + (2\mathbf{z} \mathbf{w} t)^2}} = \frac{1}{(\mathbf{w} t)^2}$$

• Phase plot
$$f(w \to \infty) = -\lim_{w \to \infty} \tan^{-1} \frac{2zwt}{1 - w^2t^2} = \lim_{w \to \infty} \tan^{-1} \frac{-2z}{-wt} = -180^{\circ}$$

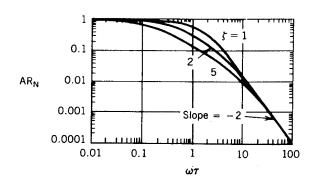
Resonance

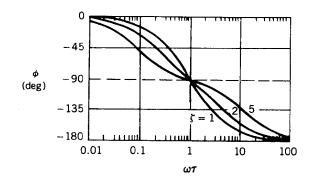
$$d(AR_N)/d\mathbf{w} = 0$$

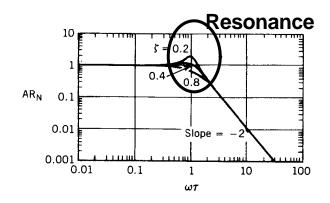
$$\boldsymbol{w}_{\text{max}} = \frac{\sqrt{1 - 2\boldsymbol{z}^2}}{\boldsymbol{t}}$$

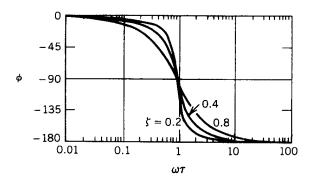
for 0 < z < 0.707

The amplitude of output oscillation is bigger than that of input when the resonance occurs.









1ST ORDER VS. 2ND ORDER (OVERDAMPED)

Initial slope of step response

1st order:
$$y'(0) = \lim_{s \to \infty} \left\{ s^2 Y(s) \right\} = \lim_{s \to \infty} \frac{KAs}{t + 1} = \frac{KA}{t} \neq 0$$

2nd order: $y'(0) = \lim_{s \to \infty} \left\{ s^2 Y(s) \right\} = \lim_{s \to \infty} \frac{KAs}{t^2 s + 2zt s + 1} = 0$

Shape of the curve (Convexity)

1st order:
$$y''(t) = -Ke^{-t/t} < 0$$
 (For $K > 0$) \Rightarrow No inflection

2nd order:
$$y''(t) = -\frac{KA}{t_1 - t_2} \left(\frac{e^{-t/t_1}}{t_1} - \frac{e^{-t/t_2}}{t_2} \right)$$

 $(+ \rightarrow - \text{ as } t \uparrow) \implies \text{Inflection}$

CHARACTERIZATION OF SECOND ORDER SYSTEM

- 2nd order Underdamped response
 - Rise time (t_r)

$$t_r = \boldsymbol{t} (n\boldsymbol{p} - \cos^{-1} \boldsymbol{z}) / \sqrt{1 - \boldsymbol{z}^2} \quad (n = 1)$$

- Time to 1^{st} peak (t_p)

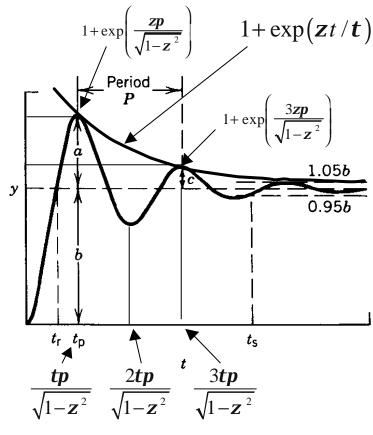
$$t_p = t \boldsymbol{p} / \sqrt{1 - \boldsymbol{z}^2}$$

- Settling time (t_s)

$$t_s \approx -t /z \ln(0.05)$$

Overshoot (OS)

$$OS = a/b = \exp\left(-pz/\sqrt{1-z^2}\right)$$



Decay ratio (DR): a function of damping coefficient only!

$$DR = c / a = (OS)^2 = \exp(-2pz / \sqrt{1-z^2})$$

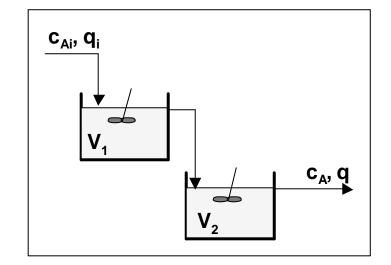
- Period of oscillation (P) $P = 2pt / \sqrt{1-z^2}$

2ND ORDER PROCESSES

Two tanks in series

- If $v_1=v_2$, critically damped.
- Or, overdamped (no oscillation)

$$\frac{C_A(s)}{C_{Ai}(s)} = \frac{1}{((V_1/q)s+1)((V_2/q)s+1)}$$



Spring-dashpot (shock absorber)

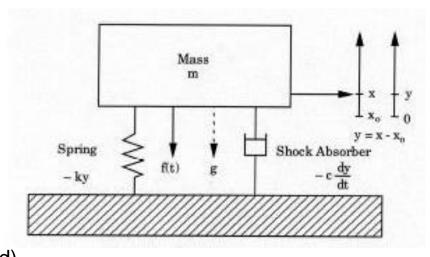
By force balance

$$(mg + f(t)) - ky - cv = ma$$

$$my'' = -ky - cy' + (mg + f(t))$$

$$\left(\sqrt{\frac{m}{k}}\right)^{2} y'' + 2\sqrt{\frac{c^{2}}{4mk}}\sqrt{\frac{m}{k}}y' + y = \tilde{f}(t)$$

$$Z \text{ (can be <1: underdamped)}$$



Korea University

Underdamped Processes

- Many examples can be found in mechanical and electrical system.
- Among chemical processes, open-loop underdamped process is quite rare.
- However, when the processes are controlled, the responses are usually underdamped.
- Depending on the controller tuning, the shape of response will be decided.
- Slight overshoot results short rise time and often more desirable.
- Excessive overshoot may results long-lasting oscillation.

POLES AND ZEROS

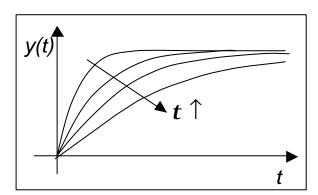
$$G(s) = \frac{N(s)}{D(s)} = \frac{K(b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + 1)}{(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1)}$$

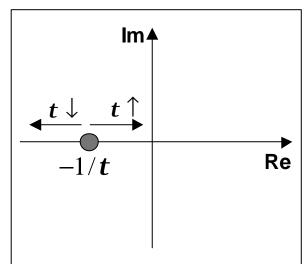
- Poles (D(s)=0)
 - Where a transfer function cannot be defined.
 - Roots of the denominator of the transfer function
 - Modes of the response
 - Decide the stability
- Zero (N(s)=0)
 - Where a transfer function becomes zero.
 - Roots of the numerator of the transfer function
 - Decide weightings for each mode of response
 - Decide the size of overshoot or inverse response
- They can be real or complex

• Real pole from (ts+1)

$$s = -\frac{1}{t}$$

- Mode: $e^{-t/t}$





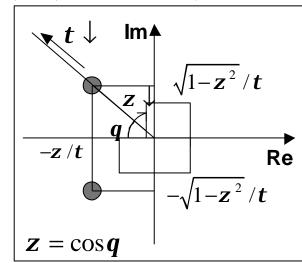
- If the pole is at the origin, it becomes "integrating pole."
- If the pole is in RHP, the response increases exponentially.

• Complex pole from $(t^2s^2 + 2zts + 1)$ (-1 < z < 1)

$$s = -\frac{z}{t} \pm j \frac{\sqrt{1-z^2}}{t} = -a \pm jb$$

$$|s| = \sqrt{\frac{z^2 + 1 - z^2}{t^2}} = \frac{1}{t} \text{ (function of } t \text{ only)}$$

$$\angle s = \pm \tan^{-1} \frac{\sqrt{1-z^2}}{z} \text{ (function of } z \text{ only)}$$



Korea University

6-19

- Modes:
$$e^{-at \pm j bt} = e^{-at} (\cos bt \pm j \sin bt)$$

$$= e^{-zt/t} (\cos \frac{\sqrt{1-z^2}}{t} t \pm j \sin \frac{\sqrt{1-z^2}}{t} t)$$

- Assume t is positive.
- If z < 0, the exponential part will grow as t increases: unstable
- If z > 0, the exponential part will shrink as t increases: stable
- If z = 0, the roots are pure imaginary: sustained oscillation

Effect of zero

$$G(s) = \frac{N(s)}{(s+p_1)\cdots(s+p_n)} = w_1 \frac{1}{(s+p_1)} + \cdots + w_n \frac{1}{(s+p_n)}$$

- The effects on weighting factors are not obvious, but it is clear that the numerator (zeros) will change the weighting factors.

EFFECTS OF ZEROS

Lead-lag module

$$G(s) = \frac{N(s)}{D(s)} = \frac{K(\boldsymbol{t}_a s + 1)}{(\boldsymbol{t}_1 s + 1)} \longrightarrow \text{Lead}$$

Depending on the location of zero

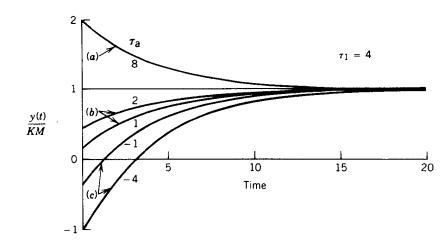
$$Y(s) = \frac{KM(t_a s + 1)}{s(t_1 s + 1)} = KM \left\{ \frac{1}{s} + \frac{t_a - t_1}{t_1 s + 1} \right\} \qquad y(t) = KM \left[1 - \left(1 - \frac{t_a}{t_1} \right) e^{-t/t_1} \right]$$

$$y(t) = KM \left[1 - \left(1 - \frac{\boldsymbol{t}_a}{\boldsymbol{t}_1} \right) e^{-t/\boldsymbol{t}_1} \right]$$

(a) $t_a > t_1 > 0$

The lead dominates the lag.

(b)() $< t_a < t_1$ The lag dominates the lead.



(c) $0 > t_a$ **Inverse response**

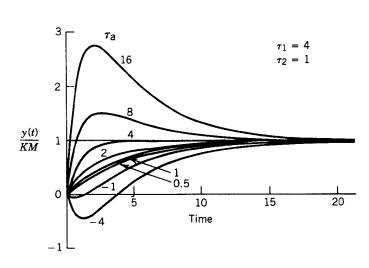
Overdamped 2nd order+single zero system

$$G(s) = \frac{N(s)}{D(s)} = \frac{K(\mathbf{t}_a s + 1)}{(\mathbf{t}_1 s + 1)(\mathbf{t}_2 s + 1)}$$

$$Y(s) = \frac{KM(t_a s + 1)}{s(t_1 s + 1)(t_2 s + 1)} = KM \left\{ \frac{1}{s} + \frac{t_1(t_a - t_1)}{t_1 - t_2} + \frac{t_2(t_a - t_2)}{t_1 s + 1} + \frac{t_2(t_a - t_2)}{t_2 s + 1} \right\}$$

$$y(t) = KM \left[1 + \frac{t_a - t_1}{t_1 - t_2} e^{-t/t_1} + \frac{t_a - t_2}{t_2 - t_1} e^{-t/t_2} \right]$$

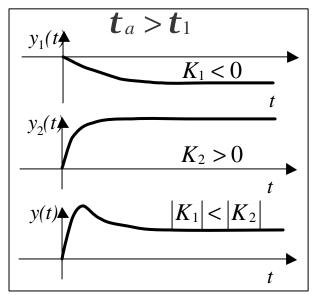
- (a) $t_a > t_1 > 0$ (assume $t_1 > t_2$) The lead dominates the lags.
- (b) $0 < t_a \le t_1$ The lags dominate the lead.
- (c) $0 > t_a$ Inverse response

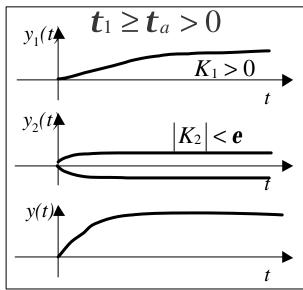


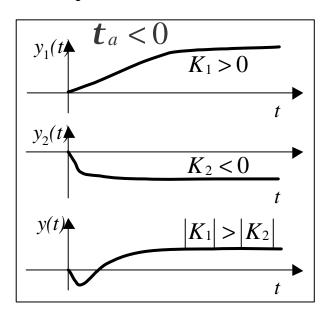
Other interpretation

$$G(s) = \frac{K(\mathbf{t}_a s + 1)}{(\mathbf{t}_1 s + 1)(\mathbf{t}_2 s + 1)} = \frac{K_1}{(\mathbf{t}_1 s + 1)} + \frac{K_2}{(\mathbf{t}_2 s + 1)}$$

- Since $t_1 > t_2$, 1 is slow dynamics and 2 is fast dynamics.



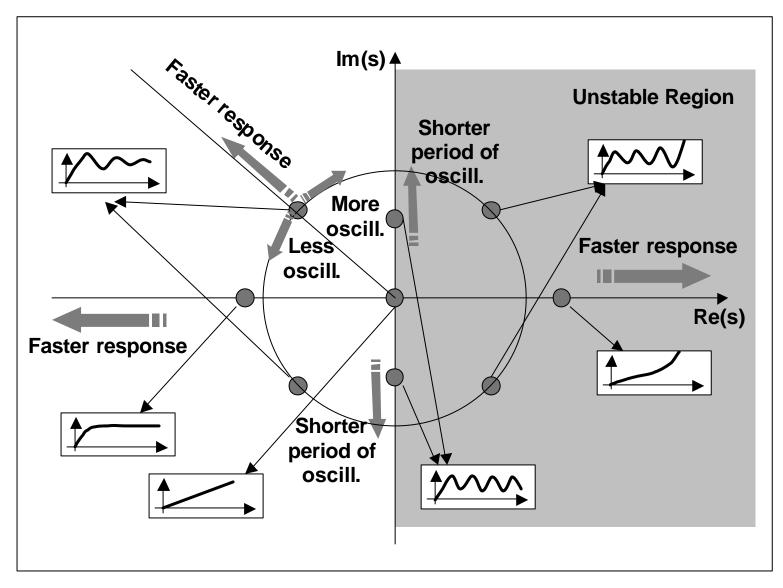




CHE302 Process Dynamics and Control

Korea University 6-23

EFFECTS OF POLE LOCATION



EFFECTS OF ZERO LOCATION

