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THE RATIONALE FOR MATHEMATICAL
MODELING

• Where to use
– To improve understanding of the process
– To train plant operating personnel
– To design the control strategy for a new process
– To select the controller setting
– To design the control law
– To optimize process operating conditions

• A Classification of Models
– Theoretical models (based on physicochemical law)
– Empirical models (based on process data analysis)
– Semi-empirical models (combined approach)
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DYNAMIC VERSUS STEADY-STATE MODEL

• Dynamic model
– Describes time behavior of a process

• Changes in input, disturbance, parameters, initial condition, etc.
– Described by a set of differential equations

: ordinary (ODE), partial (PDE), differential-algebraic(DAE)

• Steady-state model
– Steady state: No further changes in all variables
– No dependency in time: No transient behavior
– Can be obtained by setting the time derivative term zero

Dynamic Model
(ODE, PDE)

Initial Condition, x(0)

Input, u(t) Output, y(t)

Parameter, p(t)
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MODELING PRINCIPLES

• Conservation law
– Within a defined system boundary (control volume)

• Mass balance (overall, components)
• Energy balance
• Momentum or force balance
• Algebraic equations: relationships between

variables and parameters

rate of rate of rate of

accumulation input output

rate of rate of

generation disappreance

     
= −     
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MODELING APPROACHES

• Theoretical Model
– Follow conservation laws
– Based on physicochemical

laws
– Variables and parameters

have physical meaning
– Difficult to develop
– Can become quite complex
– Extrapolation is valid unless

the physicochemical laws are
invalid

– Used for optimization and
rigorous prediction of the
process behavior

• Empirical model
– Based on the operation data
– Parameters may not have

physical meaning
– Easy to develop
– Usually quite simple
– Requires well designed

experimental data
– The behavior is correct only

around the experimental
condition

– Extrapolation is usually
invalid

– Used for control design and
simplified prediction model
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DEGREE OF FREEDOM (DOF) ANALYSIS

• DOF
– Number  of variables that can be specified independently
– NF = NV - NE

• NF : Degree of freedom (no. of independent variables)
• NV : Number of variables
• NE : Number of equations (no. of dependent variables)
• Assume no equation can be obtained by a combination of other

equations

• Solution depending on DOF
– If NF = 0, the system is exactly determined. Unique solution

exists.
– If NF > 0, the system is underdetermined. Infinitely many

solutions exist.
– If NF < 0, the system is overdetermined. No solutions exist.
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LINEAR VERSUS NONLINEAR MODELS

• Superposition principle

• Linear dynamic model: superposition principle holds

– Easy to solve and analytical solution exists.
– Usually, locally valid around the operating condition

• Nonlinear: “Not linear”
– Usually, hard to solve and analytical solution does not exist.
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ILLUSTRATION OF SUPERPOSITION
PRINCIPLE

• Valid only for linear process
– For example, if y(t)=u(t)2,

(u1(t)+1.5u2(t))2 is not same as u1(t)2 +1.5u2(t)2.

u1(t)

t

1

y1(t)

t

u2(t)

t

1.5

1

y2(t)

t1

y(t)

t1

u(t)

t

2.5

1

1

+



CHE302 Process Dynamics and Control Korea University 4-9

TYPICAL LINEAR DYNAMIC MODEL

• Linear ODE

• Nonlinear ODE
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MODELS OF REPRESENTATIVE
PROCESSES

• Liquid storage systems
– System boundary: storage tank
– Mass in: qi (vol. flow, indep. var)
– Mass out: q (vol, flow, dep. var)
– No generation or disappearance

(no reaction or leakage)
– No energy balance

– DOF=2 (h, qi) - 1=1
– If , the ODE is linear.

(RV is the resistance to flow)
– If                          , the ODE is nonlinear.

(CV is the valve constant)

( )i i
dh

A q q q f h
dt

= − = −

Accumulation rate in tank
Mass in rate

Mass out rate Outlet flow is a
function of head

( ) / Vf h h R=

( ) /V cf h C gh gρ=

hV

qi

q

Area = A

Control
volume
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• Continuous Stirred Tank Reactor (CSTR)
– Liquid level is constant (No acc. in tank)

– Constant density, perfect mixing
– Reaction: Aà B   (r = k0exp(-E/RT)cA)
– System boundary: CSTR tank
– Component mass balance

– Energy balance

– DOF analysis
• No. of variables: 6 (q, cA, cAi, Ti, T, Tc)
• No. of equation:2 (two dependent vars.: cA, T)
• DOF=6 – 2 = 4
• Independent variables: 4 ( q, cAi, Ti, Tc)
• Parameters: kinetic parameters, V, U, A, other physical properties
• Disturbances: any of q, cAi, Ti, Tc, which are not manipulatable

hV, T

cAi, q i, T i

Cooling
medium, Tc

cA, q, T

( )A
Ai A A

dc
V q c c Vkc

dt
= − −

( ) ( ) ( )p p i A c
dT

V C q C T T H Vkc UA T T
dt

ρ ρ= − + −∆ + −
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STANDARD FORM OF MODELS

• State-space model

– x: states, [cA T]T

– u: inputs, [q Tc]T

– d: disturbances, [cAi Ti]T

– y: outputs – can be a function of above, y=g(x,d,u), [cA T]T

– If higher order derivatives exist, convert them to 1st order.
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CONVERT TO 1ST-ORDER ODE

• Higher order ODE

• Define new states

• A set of 1st-order ODE’s
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SOLUTION OF MODELS

• ODE (state-space model)
– Linear case: find the analytical solution via Laplace transform,

or other methods.
– Nonlinear case: analytical solution usually does not exist.

• Use a numerical integration, such as RK method, by defining
initial condition, time behavior of input/disturbance

• Linearize around the operating condition and find the analytical
solution

• PDE
– Convert to ODE by discretization of spatial variables using

finite difference approximation and etc.
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LINEARIZATION

• Equilibrium (Steady state)
– Set the derivatives as zero:
– Overbar denotes the steady-state value and        is the

equilibrium point. (could be multiple)
– Solve them analytically or numerically using Newton method

• Linearization around equilibrium point
– Taylor series expansion to 1st order

– Ignore higher order terms
– Define deviation variables:
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