CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS

Professor Dae Ryook Yang

Fall 2001 Dept. of Chemical and Biological Engineering Korea University

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEX RESOCT A RESOCT A LIMIT CHE

THE RATIONALE FOR MATHEMATICAL MODELING

• **Where to use**

- **To improve understanding of the process**
- **To train plant operating personnel**
- **To design the control strategy for a new process**
- **To select the controller setting**
- **To design the control law**
- **To optimize process operating conditions**

• **A Classification of Models**

- **Theoretical models (based on physicochemical law)**
- **Empirical models (based on process data analysis)**
- **Semi-empirical models (combined approach)**

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEXT METALLY RESISTENT MATE

DYNAMIC VERSUS STEADY-STATE MODEL

• **Dynamic model**

- **Describes time behavior of a process**
	- **Changes in input, disturbance, parameters, initial condition, etc.**
- **Described by a set of differential equations**
	- **: ordinary (ODE), partial (PDE), differential-algebraic(DAE)**

• **Steady-state model**

- **Steady state: No further changes in all variables**
- **No dependency in time: No transient behavior**
- **Can be obtained by setting the time derivative term zero**

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST MESS ROTE RESOLUTION A-3

MODELING PRINCIPLES

• **Conservation law**

– **Within a defined system boundary (control volume)**

rate of \Box rate of \Box rate of accumulation | input | output rate of \Box rate of generation | disappreance $\begin{vmatrix} \text{rate of} \\ \text{rate of} \end{vmatrix}$ ate of $\begin{vmatrix} \text{rate of} \\ \text{rate of} \end{vmatrix}$ $\begin{bmatrix} \text{accumulation} \end{bmatrix} = \begin{bmatrix} \text{free of} \\ \text{input} \end{bmatrix} - \begin{bmatrix} \text{cutoff} \\ \text{output} \end{bmatrix}$ | rate of | | rate of | $+ \left[\frac{1}{\text{generation}} \right] - \left[\frac{1}{\text{disappreance}} \right]$

- **Mass balance (overall, components)**
- **Energy balance**
- **Momentum or force balance**
- **Algebraic equations: relationships between variables and parameters**

MODELING APPROACHES

• **Theoretical Model**

- **Follow conservation laws**
- **Based on physicochemical laws**
- **Variables and parameters have physical meaning**
- **Difficult to develop**
- **Can become quite complex**
- **Extrapolation is valid unless the physicochemical laws are invalid**
- **Used for optimization and rigorous prediction of the process behavior**
- **Empirical model**
	- **Based on the operation data**
	- **Parameters may not have physical meaning**
	- **Easy to develop**
	- **Usually quite simple**
	- **Requires well designed experimental data**
	- **The behavior is correct only around the experimental condition**
	- **Extrapolation is usually invalid**
	- **Used for control design and simplified prediction model**

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEXT METALLY RESISTENT ACTS

DEGREE OF FREEDOM (DOF) ANALYSIS

• **DOF**

- **Number of variables that can be specified independently**
- $N_{\rm F} = N_{\rm V} N_{\rm F}$
	- **N^F : Degree of freedom (no. of independent variables)**
	- **N^V : Number of variables**
	- **N^E : Number of equations (no. of dependent variables)**
	- **Assume no equation can be obtained by a combination of other equations**
- **Solution depending on DOF**
	- $-$ **If** $N_F = 0$, the system is *exactly determined*. Unique solution **exists.**
	- $-$ **If** $N_F > 0$, the system is *underdetermined*. Infinitely many **solutions exist.**
	- $-$ **If** $N_F < 0$, the system is *overdetermined*. No solutions exist.

CHE302 Process Dynamics and Control Korea University 4-6

LINEAR VERSUS NONLINEAR MODELS

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control • **Superposition principle** • **Linear dynamic model: superposition principle holds** – **Easy to solve and analytical solution exists.** – **Usually, locally valid around the operating condition** • **Nonlinear: "Not linear"** – **Usually, hard to solve and analytical solution does not exist.** Then $L(\boldsymbol{a} x_1(t) + \boldsymbol{b} x_2(t)) = \boldsymbol{a} L(x_1(t)) + \boldsymbol{b} L(x_2(t))$ $\forall a, b \in \mathcal{R}$, and for a linear operator, L \forall **a**, **b** \in \Re , $u_1(t) \rightarrow y_1(t)$ and $u_2(t) \rightarrow y_2(t)$ $au_1(t) + bu_2(t) \rightarrow ay_1(t) + by_2(t)$ $\forall \mathbf{a}, \mathbf{b} \in \mathfrak{R}, x_1(0) \to y_1(t) \text{ and } x_2(0) \to y_2(t)$ $ax_1(0) + bx_2(0) \rightarrow ay_1(t) + by_2(t)$ **ILLUSTRATION OF SUPERPOSITION**

PRINCIPLE

• **Valid only for linear process**

- $-$ For example, if $y(t)=u(t)^2$,
	- $(u_1(t)+1.5u_2(t))^2$ is not same as $u_1(t)^2 + 1.5u_2(t)^2$.

TYPICAL LINEAR DYNAMIC MODEL

\n- \n**Linear ODE**\n
$$
t \frac{dy(t)}{dt} = -y(t) + Ku(t) \quad (t \text{ and } K \text{ are constant, 1st order})
$$
\n
$$
\frac{d^n y(t)}{dt^n} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \ldots + a_0 y(t)
$$
\n
$$
= b_m \frac{d^m u(t)}{dt^m} + b_{m-1} \frac{d^{m-1} u(t)}{dt^{m-1}} + \ldots + b_0 u(t) \quad \text{(nth order)}
$$
\n
\n- \n**Nonlinear ODE**\n
$$
t \frac{dy(t)}{dt} = -y(t)^2 + Ku(t) \qquad t \frac{dy(t)}{dt} y(t) = -y(t) \sin(y) + Ku(t)
$$
\n
\n

$$
t\frac{dy(t)}{dt} = -y(t) + K\sqrt{u(t)} \qquad t\frac{dy(t)}{dt} = -e^{-y(t)} + Ku(t)
$$

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEX RESOCT A RESOCT A VIOLET A

MODELS OF REPRESENTATIVE PROCESSES

• **Liquid storage systems**

- **System boundary: storage tank**
- **Mass in: qⁱ (vol. flow, indep. var)**
- **Mass out: q (vol, flow, dep. var)**
- **No generation or disappearance (no reaction or leakage)**
- **No energy balance**
- $-$ **DOF=2** (h, q_i) **1=1**
- $-$ If $f(h) = h/R_v$, the ODE is linear.
- $-$ **If** $f(h) = C_v \sqrt{rgh/g_c}$, the ODE is nonlinear. (C_V) is the valve constant)

 (R_V) is the resistance to flow) Accumulation rate in tank function of head **Mass in rate Mass out rate Outlet flow is a**

• **Continuous Stirred Tank Reactor (CSTR)**

- **Liquid level is constant (No acc. in tank)**
- **Constant density, perfect mixing**
- **- Reaction:** $A \rightarrow B$ ($r = k_0 \exp(-E/RT)c_A$)
- **System boundary: CSTR tank**
- **Component mass balance**

$$
V\frac{dc_A}{dt} = q(c_{Ai} - c_A) - Vkc_A
$$

– **Energy balance**

$$
V \mathbf{r} C_p \frac{dT}{dt} = q \mathbf{r} C_p (T_i - T) + (-\Delta H) V k c_A + UA(T_c - T)
$$

- **DOF analysis**
	- **No. of variables: 6** $(q, c_A, c_{Ai}, T_i, T, T_c)$
	- No. of equation:2 (two dependent vars.: c_A , *T*)
	- **DOF=6** $2 = 4$
	- Independent variables: $4(q, c_{Ai}, T_i, T_c)$
	- **Parameters: kinetic parameters,***V***,** *U***,** *A***, other physical properties**
	- Disturbances: any of q , c_{Ai} , T_i , T_c , which are not manipulatable

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEXANT RESISTENT CHEFT CHEFT

STANDARD FORM OF MODELS

From the previous example

$$
\frac{dc_A}{dt} = \frac{q}{V}(c_{Ai} - c_A) - kc_A = f_1(c_A T, q, c_{Ai})
$$
\n
$$
\frac{dT}{dt} = \frac{q}{V}(T_i - T) + \frac{q}{rC_p}(-\Delta H)kc_A + \frac{UA}{rC_p}(T_c - T) = f_2(c_A, T, q, T_c, T_i)
$$

• **State-space model**

 $\dot{\mathbf{x}} = d\mathbf{x} / dt = \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{d})$

where $\mathbf{x} = [x_1, \dots, x_n]^T$, $\mathbf{u} = [u_1, \dots, u_m]^T$, $\mathbf{d} = [d_1, \dots, d_l]^T$

- $-$ **x: states,** $[c_A T]^T$
- $-$ **u:** inputs, $[q T_c]^T$
- $-$ **d: disturbances,** $[c_{Ai} T_i]^T$
- **y: outputs – can be a function of above, y=g(x,d,u),** [*c^A T*] *T*
- **If higher order derivatives exist, convert them to 1st order.**

$$
\frac{\partial z}{\partial z} \qquad \Delta z
$$
\nCHE302 Process Dynamics and Control

\nKorea University 4-14

LINEARIZATION

• **Equilibrium (Steady state)**

- **–** Set the derivatives as zero: $0 = f(\overline{x}, \overline{u}, \overline{d})$
- $-$ Overbar denotes the steady-state value and $(\overline{\mathbf{x}},\overline{\mathbf{u}},\overline{\mathbf{d}})$ is the **equilibrium point. (could be multiple)**
- **Solve them analytically or numerically using** *Newton method*

• **Linearization around equilibrium point**

– **Taylor series expansion to 1st order**

$$
f(x,u) = f(\overline{x}, \overline{\overline{u}}) + \frac{\partial f}{\partial x}\Big|_{(\overline{x}, \overline{u})} (x - \overline{x}) + \frac{\partial f}{\partial u}\Big|_{(\overline{x}, \overline{u})} (u - \overline{u}) + \cdots
$$

– **Ignore higher order terms**

 \sim **Define deviation variables: x**^{\prime} = **x** − $\overline{\mathbf{x}}$, **u** \prime = **u** − $\overline{\mathbf{u}}$

$$
\dot{\mathbf{x}}' = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \bigg|_{(\bar{\mathbf{x}}, \bar{\mathbf{u}})} \mathbf{x}' + \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \bigg|_{(\bar{\mathbf{x}}, \bar{\mathbf{u}})} \mathbf{u}' = \mathbf{A}\mathbf{x}' + \mathbf{B}\mathbf{u}'
$$

CHE302 Process Dynamics and Control CHE302 Process Dynamics and Control CHEST CONTEXT RESOCO KOREY AT A LIST CHE

 ∂x_1

f $\overline{\partial x}$

 ∂f $\left| \overrightarrow{\frac{\partial x_1}{\partial x_1}} \cdots \overrightarrow{\frac{\partial x_n}{\partial x_n}} \right|$

 $\frac{\partial \mathbf{A}}{\partial \mathbf{x}}$ = $\begin{vmatrix} \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial \mathbf{x}} & \cdots & \frac{\partial f_n}{\partial \mathbf{x}} \end{vmatrix}$

1

 $\frac{1}{1}$ $\frac{U_1}{U_1}$

 f_1 ∂f_1

 ∂f_1 ∂f_1 |

 $\ddot{\cdot}$

Jacobian

 x_1 ∂x_n

n n

M O M

 f_n *df* x_1 ∂x

 $\ddot{\cdot}$

 $\begin{bmatrix} \frac{\partial x_1}{\partial x_2} & \frac{\partial x_n}{\partial x_n} \end{bmatrix}$

n