# CHE302 LECTURE II MEASUREMENT, TRANSMITTERS AND FILTERING

### **Professor Dae Ryook Yang**

## Fall 2001 Dept. of Chemical and Biological Engineering Korea University

**CHE302 Process Dynamics and Control** 

### **INTRODUCTION TO SENSOR**

#### • What is Sensor?

 Sensor converts the physical quantity to signal that can be recognized by other components such as display, transmitter and etc.

#### Sensor types

- Temperature: thermocouple, RTD, thermister
- Pressure: bellows, bourdon tube, diaphragm
- Flow rate: orifice, venturi, magnetic, ultrasonic, Coliolis effect
- Liquid level: float, differential pressure
- pH: pH electrode
- Viscosity: pressure drop across venturi or vane deflection
- Composition: density, conductivity, GC, IR, NIR, UV

### **MEASUREMENT DEVICE**

- Transducer: Sensor+Transmitter
  - Transmitter generates an industrial standard signal from the sensor output.
  - Standard instrumentation signal levels
    - Voltage: 1~5VDC, 0~5VDC, -10~+10VDC, etc.
    - Current: 4~20mA (long range transmission with driver)
    - Pneumatic: 3-15psig
  - Signal conversion
    - I/P or P/I transducer: current-to-pressure or vice versa
    - I/V (I/E) or V/I: current-to-voltage or vice versa
    - P/E or E/P: pressure-to-voltage or vice versa
- Analog-to-Digital (A/D) converter
  - Continuous signal converted to digital signal after sampling
  - Specification: sample rate, resolution (8bit, 12bit, 16bit)

### TRANSMITTERS

- Transmitter Gain (K<sub>m</sub>): adjustable
  - Amplification ratio: (output span)/(input span)
- Span and Zero: adjustable
  - Span: magnitude of range of transmitter signal
  - Zero: lower limit of transmitter signal



• Other functions: square-root extractor, ...

**CHE302 Process Dynamics and Control** 

### **TEMPERATURE SENSORS**

| Principle            | Туре                               | Usable<br>range (ºC)            | Remarks                                                        |  |
|----------------------|------------------------------------|---------------------------------|----------------------------------------------------------------|--|
| Thermal<br>Expansion | Gas expansion<br>Liquid<br>Bimetal | -230~600<br>-200~350<br>-50~500 | N2<br>Oil                                                      |  |
| Resistance           | Pt-100<br>Thermistor               | -200~500<br><300                | Accurate, linear, self heating<br>Cheap, inaccurate, nonlinear |  |
| EMF                  | Thermocouple                       | -200~1600                       | Low sensitivity                                                |  |
|                      | IC temp. sensor                    | -100~150                        | High voltage, accurate, linear                                 |  |
| Radiation            | Pyrometer                          | Very wide                       | Noncontacting, need accurate calibration                       |  |

| Temperature Sensor Attributes |                                |                           |                                    |  |  |
|-------------------------------|--------------------------------|---------------------------|------------------------------------|--|--|
| Criteria                      | Thermocouple                   | RTD                       | Thermistor                         |  |  |
| Cost-OEM Quality              | Low                            | High                      | Low                                |  |  |
| Temperature Range             | Very wide<br>-450°F<br>+4200°F | Wide<br>-400°F<br>+1200°F | Shot to medium<br>-100°F<br>+500°F |  |  |
| Interchangeability            | Good                           | Excellent                 | Poor to fair                       |  |  |
| Long-term Stability           | Poor to fair                   | Good                      | Poor                               |  |  |
| Accuracy                      | Medium                         | High                      | Medium                             |  |  |
| Repeatability                 | Poor to fair                   | Excellent                 | Fair to good                       |  |  |
| Sensitivity (output)          | Low                            | Medium                    | Very high                          |  |  |
| Response                      | Medium to fast                 | Medium                    | Medium to fast                     |  |  |
| Linearity                     | Fair                           | Good                      | Poor                               |  |  |
| Self Heating                  | No                             | Very low to low           | High                               |  |  |
| Point (end) Sensitive         | Excellent                      | Fair                      | Good                               |  |  |
| Lead Effect                   | High                           | Medium                    | Low                                |  |  |
| Size/Packaging                | Small to large                 | Medium to small           | Small to medium                    |  |  |

**CHE302 Process Dynamics and Control** 

| Temperature Sensor Advantages/Disadvantages |                                                                                                                                                                                         |                                                                                                                                                                                                                                            |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sensor                                      | Advantages                                                                                                                                                                              | Disadvantages                                                                                                                                                                                                                              |  |  |
| Thermocouple                                | <ul> <li>Self-powered</li> <li>Simple</li> <li>Rugged</li> <li>Inexpensive</li> <li>Wide variety</li> <li>Wide range</li> </ul>                                                         | <ul> <li>Non-linear</li> <li>Low voltage</li> <li>Reference required</li> <li>Least stable</li> <li>Least sensitive</li> </ul>                                                                                                             |  |  |
| RTD                                         | <ul> <li>Most stable</li> <li>Most accurate</li> <li>More linear than thermocouple</li> </ul>                                                                                           | <ul> <li>Expensive</li> <li>Current source required</li> <li>Small △</li> <li>Low absolute resistance</li> <li>Self heating</li> </ul>                                                                                                     |  |  |
| Thermistor                                  | <ul> <li>High output</li> <li>Fast</li> <li>Two-wire ohms measurement</li> </ul>                                                                                                        | <ul> <li>Non-linear</li> <li>Limited range</li> <li>Fragile</li> <li>Current source required</li> <li>Self heating</li> </ul>                                                                                                              |  |  |
| Infrared                                    | <ul> <li>No contact required</li> <li>Very fast response time</li> <li>Good stability over time</li> <li>High repeatability</li> <li>No oxidation/corrosion to affect sensor</li> </ul> | <ul> <li>High initial cost</li> <li>More complex/support electronics</li> <li>Spot size restricts application</li> <li>Emissivity variations affect readings</li> <li>Accuracy affected by dust, smoke and background radiation</li> </ul> |  |  |

## THERMOCOUPLE



### Thermocouple Types

- Chromel- alumel (K- type): most popularly used
- Iron- constantan (J- type): higher electromotive force (emf)
- Chromel- constantan (E- Type): cryogenic temperature
- 13% Rh. Pt Pt (R- type): high temperature (> 900°C)
- Typical emf is about 0.041mV/°C for K type
  - Needs signal amplification
- Ice point can be a ice bath or an electronic device to compensate the ambient temperature.

| Thermocouple type        | Overall Range<br>(°C) | EMF<br>(mV/ °C) |
|--------------------------|-----------------------|-----------------|
| B (Platinum / Rhodium)   | 100~1800              | 0.01            |
| E (Chromel / Constantan) | -270~790              | 0.068           |
| J (Iron / Constantan)    | -210~1050             | 0.054           |
| K (Chromel / Alumel)     | -270~1370             | 0.041           |
| N (Nicrosil / Nisil)     | -260~1300             | 0.038           |
| R (Platinum / Rhodium)   | -50~1760              | 0.01            |
| S (Platinum / Rhodium)   | -50~1760              | 0.01            |
| T (Copper / Constantan)  | -270~400              | 0.054           |

- B,R,S: high temp. low sensitivity, high cost
- S: very stable, use as the standard of calibration for the melting point of gold (1064.43°C).
- N: improved type K, getting more popular
- T: cryogenic use
- Ref: <u>http://www.watlow.com/reference/refdata/TOP</u>

http://www.picotech.com/applications/thermocouple.html



**CHE302 Process Dynamics and Control** 

Korea University 2-10

### **FLOW MEASUREMENT (1)**

Differential Pressure Cell

$$Q = \frac{C_d A_2}{\sqrt{1 - (A_2 / A_1)^2}} \sqrt{\frac{2g_c \Delta P}{r}}$$

- $\Delta P$ : Delta P across the orifice
- A<sub>1</sub>: area of flow pipe
- A<sub>2</sub>: area of orifice
- C<sub>d</sub>: orifice coefficient
- Maximum pressure drop should be < 4% of the total line pressure</li>
- Selection of orifice size and delta P range is very important for the reading precision





**CHE302 Process Dynamics and Control** 

### **FLOW MEASUREMENT(2)**

#### Vortex Flow Meter

- The vortices create low and high pressure zones behind the bluff body.
- The vortex meter uses a piezoelectric crystal sensor to detect the pressure exerted by the vortices on the sensing wing.
- The piezoelectric crystal converts this vortex shedding frequency into electrical signals.
- Electromagnetic Flow Meter
  - Electrically conducting fluid passing through a magnetic field created by the device.





### **CORIOLIS FLOWMETER (3)**

- Flow rate is measured by Coriolis effect (1835)
- Mass flowrate, vol. flowrate, temp. and density are simultaneously measured.





http://www.emersonprocess.com/micromotion/tutor/default.html

**CHE302 Process Dynamics and Control** 

### **FLOW MEASUREMENT (4)**

- Ultrasonic Flow Meter
  - High accuracy
  - No contact with flow



- Positive Displacement Flow Meter
  - Turbine, gear, wheels

#### Thermal Dispersion Flow Meter

- Flow over heating coil will change temperature

### **SELECTION OF FLOWMETERS**

| Requirement           | Orifice                             | Positive<br>displace<br>ment | Vortex               | Electro-<br>Magnetic                                       | Acoustic                             | Coriolis                                          |
|-----------------------|-------------------------------------|------------------------------|----------------------|------------------------------------------------------------|--------------------------------------|---------------------------------------------------|
| accuracy              | ±2~4%<br>of full span               | ±0.2~0.5% of rate            | ±1.0%<br>of rate     | ±0.5%<br>of rate                                           | ±1~5%<br>of full span                | ±0.5%<br>of rate                                  |
| Press. loss           | medium                              | high                         | medium               | none                                                       | none                                 | low                                               |
| Initial Cost          | low                                 | medium                       | high                 | high                                                       | high                                 | very high                                         |
| Maintenance<br>cost   | high                                | medium                       | medium               | low                                                        | low                                  | low                                               |
| Application           | Clean,dirty<br>liq.; some<br>slurry | Clean<br>viscous<br>liq.     | Clean,dirty<br>liq.; | Clean,dirty<br>viscous<br>conductive<br>liq. and<br>slurry | Dirty,<br>viscous liq.<br>and slurry | Clean,dirty<br>viscous liq.<br>and some<br>slurry |
| Upstream pipe<br>size | 10~30                               | None                         | 10 to 20             | 5                                                          | 5 to 30                              | none                                              |
| Viscosity effect      | high                                | high                         | medium               | none                                                       | none                                 | none                                              |
| Rangeability          | 4 to 1                              | 10 to 1                      | 10 to 1              | 40 to 1                                                    | 20 to 1                              | 10 to 1                                           |

**CHE302 Process Dynamics and Control** 

### **LEVEL MEASUREMENT**

- Float level sensor
- Ultrasonic level sensor
- Use of DP cell
  - Measure fluid head as Delta P
  - Various implementation









**CHE302 Process Dynamics and Control** 

### **OTHER MEASUREMENTS**

#### Composition measurements

- Expensive
- Long time delay
- High to maintenance cost
- Gas Chromatography
- IR, NIR, Raman, UV spectrophotometer
- pH sensor electrode: concentration of [H+]
- Secondary Measurements
  - Density or temp. for binary composition
- Soft Sensors
  - Estimated by a model based on other measurements

### **FILTERING**

#### Noise Source

- **Process nature (turbulence, vibration, oscillation...)**
- Various noise source from environment
- Power line, electromagnetic force, etc.

#### Removing noise

Analog filter



Filter time constant

**Filtered output** 

- First-order filter analogy  $t_{F} \frac{y_{F} - y_{F}}{+ y_{F}} + y_{F} = y$ Previous filtered output

$$y_F = \mathbf{a} y_F^0 + (1 - \mathbf{a}) y \text{ where } \mathbf{a} = \frac{\mathbf{t}_F / \Delta t}{1 + \mathbf{t}_F / \Delta t} (0 < \mathbf{a} < 1)$$

**CHE302 Process Dynamics and Control** 

- The filter behaves as an interpolation between the measured output and previous filtered output.
- If *a*=1, the measured output is ignored. (constant)
- If *a*=0, the filtered output is same as the measured output (no filtering)
- If  $t_F = 0, a = 0$  and no filtering is achieved.
- If  $t_F = \mathbf{Y}$ , a = 1 and the measured output is ignored.
  - **D** As  $t_F$  increases, heavier filter is applied.

