
CHE302 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS Professor Dae Ryook Yang		 Supplements for stability For input-output model, Asymptotic stability (AS): For a system with zero equilibrium point, if u(t)=0 for all time t implies y(t) goes to zero with time. Same as "General stability": all poles have to be in OLHP. Marginally stability (MS): For a system with zero equilibrium point, if u(t)=0 for all time t implies y(t) is bounded for all time. Same as BIBO stability: all poles have to be in OLHP or on the imaginary axis with any poles occurring on the imaginary axis non-repeated. If the imaginary pole is repeated the mode is tsin(wt) and it is unstable. For state -space model, 	
CHE302 Process Dynamics and Control	Korea University 10-1	CHE302 Process Dynamics and Control	Korea University 10-3
DEFINITION OF STABILITY		EXAMPLES	
 BIBO Stability "An unconstrained linear system is sa output response is bounded for all bouit is said to be unstable." GeneralStability A linear system is stable if and only if denominator in the transfer function negative real parts (OLHP). Otherwite the system is the difference between the twouch of the difference between the twouch of the difference between the twouch of the difference is the difference between the twouch of the difference is the differe	ounded inputs. Otherwise f all roots (poles) of the are negative or have se, the system is unstable. vo definitions?	• Feedback control system $G_{c}(s) = K_{c}$ $G_{v}(s) = \frac{1}{2s+1}$ $G_{m}(s) = \frac{1}{s+1}$ $G_{p}(s) = G_{L}(s) = \frac{1}{5s+1}$ $\frac{C(s)}{R(s)} = \frac{K_{m}G_{c}G_{v}G_{p}}{1+G_{c}G_{v}G_{p}G_{m}}$ $= \frac{K_{c}(s+1)}{10s^{3}+17s^{2}+8s+1+K_{c}}$ $- \text{ Using root-finding techniques, the polyhold of the step response gets}$ $- \text{ If } K_{c} > 12.6, \text{ the step response is unstall}$	s more oscillatory.
CHE302 Process Dynamics and Control	Korea University 10-2	$-$ If R_c >12.0, the step response is unstan CHE302 Process Dynamics and Control	Korea University 10-4
Sheover rougoo bynamico ana control		Shebuz i 100655 Dynamics and Control	Refea Chivefoldy

Simple Example 1	Examplefor Routh test	
$G_{c}(s) = K_{c}, G_{v}(s) = K_{v}, G_{m}(s) = 1, G_{p}(s) = K_{p}/(t_{p}s+1)$	 Characteristic equation 	
Characteristic equation: $1 + G_{OL}(s) = 1 + K_c K_v K_p / (t_p s + 1) = 0$	$10s^3 + 17s^2 + 8s + 1 + K_c = 0$	
	- Necessarycondition	
$\boldsymbol{t}_{p}\boldsymbol{s} + (1 + K_{c}K_{v}K_{p}) = 0 \implies \boldsymbol{s} = -(1 + K_{c}K_{v}K_{p})/\boldsymbol{t}_{p}$	$1 + K_c > 0 \Longrightarrow K_c > -1$	
$\therefore K_c K_v K_p > -1 \text{ for stability}$	• If any coefficient is not positive, stop and conclude the system is unstable. (at least one RHP pole, possibly more)	
- When $K_p > 0$ and $K_p > 0$, the controller should be reverse acting $(K_c > 0)$ for stability.	$- \text{ Routh array}$ $s^{3} 10 8 b_{1} = \frac{17(8) - 10(1 + K_{c})}{17} = 7.41 - 0.588K_{c}$ $s^{2} 17 1 + K_{c} b_{1} b_{2} b_{2} = \frac{17(0) - 10(0)}{17} = 0$ $s^{0} c_{1} c_{1} = \frac{b_{1}(1 + K_{c}) - 17(0)}{b_{1}} = 1 + K_{c}$	
Simpleexample2		
$G_c(s) = K_c$, $G_v(s) = 1/(2s+1)$, $G_m(s) = 1$, $G_p(s) = 1/(5s+1)$		
Characteristic equation: $1 + K_c / [(2 s + 1)(5 s + 1)] = 0$		
$10s^2 + 7s + 1 + K_c = 0 \implies s = \left[-7 \pm \sqrt{49 - 40(1 + K_c)}\right]/20$	– Stable region	
$\therefore K_c > -1$ for stability	$b_1 = 7.41 - 0.588K_c > 0 \text{ and } K_c > -1 \implies -1 < K_c < 12.6$	
CHE302 Process Dynamics and Control Korea University 10-5	CHE302 Process Dynamics and Control Korea University 10-7	
EXAMPLE 1 EXAMPLE 1 Construct the Routh array Bind an analysis of the spin and the sp	 Supplements for Routh test It is valid only when the characteristic equation is a polynomial of s. (Time delay cannot be handled directly.) If the characteristic equation contains time delay, use Pade approximation to make it as a polynomial of s. Routh test can be used to test if the real part of all roots of characteristic equation are less than -c. Original characteristic equation a_nsⁿ + a_{n-1}sⁿ⁻¹ + + a₁s + a₀ = 0 (a_n > 0) Modify characteristic equation and apply Routh criterion a_n(s+c)ⁿ + a_{n-1}(s+c)ⁿ⁻¹ + + a₁'s + a'₀ = 0 The number of sign change in the 1st column of the Routh 	
- A necessary condition for stability: all a_i 's are positive	array indicates the number of poles in RHP.	
- "A necessary and sufficient condition for all roots of the characteristic equation to have negative real parts is that all of the elements in the loft column of the Powth error are positive "	 If the two rows are proportional or the any of 1st column is zero, Routh array cannot be proceeded. 	
CHE302 Process Dynamics and ControlKorea University10-6	CHE302 Process Dynamics and Control Korea University 10-8	

 $-10 j \mathbf{w}^3 - 17 \mathbf{w}^2 + 8 j \mathbf{w} + 1 + K_{cm} = (1 + K_{cm} - 17 \mathbf{w}^2) + j \mathbf{w}(8 - 10 \mathbf{w}^2) = 0$ $\therefore (1 + K_{cm} - 17 \mathbf{w}^2) = 0 \text{ and } \mathbf{w} (8 - 10 \mathbf{w}^2) = 0$

$$\mathbf{w} = 0 \text{ or } \mathbf{w}^2 = 0.8 \Rightarrow K_{\text{ave}} = -1 \text{ or } K_{\text{ave}} = 12.6$$

- Try a test point such as $K_c=0$

CHE302 Process Dynamics and Control

 $10s^3 + 17s^2 + 8s + 1 = (s + 1)(2s + 1)(5s + 1) = 0$ (All stable) ∴ Stable range is $-1 < K_c < 12.6$

Korea University 10-10

CHE302 Process Dynamics and Control

 K_{c}

1

4

20

frequency – Example:

 $G_{OL} = \frac{2K_c}{(0.5s+1)^3}$

ARo

0.25

1

5

Classification

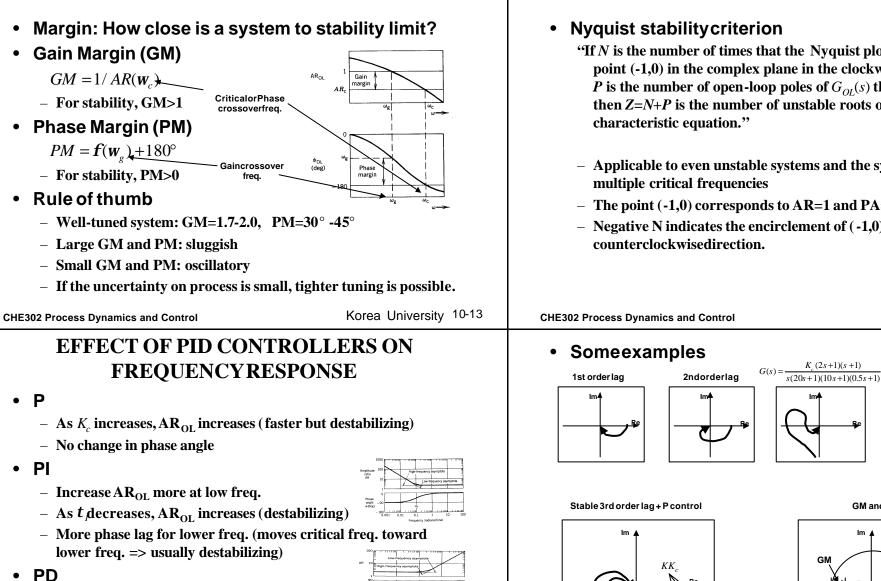
stable

Marginally stable

unstable

AROL

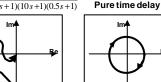
Φ_{OL} (deg) 0.0


-270

0.01

 $K_{a} = 20$

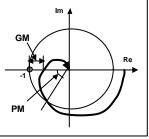
 $K_{.} = 4$


- Increase AR_{OL} more at high freq.
- As t_D increases, AR_{OL} increases at high freq. (faster)
- More phase lead for high freq. (moves critical freq. toward higher freq. => usually stabilizing)

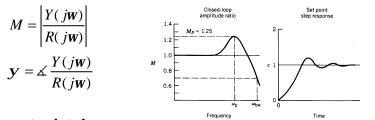
Korea University 10-14

NYQUIST STABILITY CRITERION

- "If N is the number of times that the Nyquist plot encircles the point (-1,0) in the complex plane in the clockwise direction, and *P* is the number of open-loop poles of $G_{OI}(s)$ that lies in RHP, then Z=N+P is the number of unstable roots of the closed-loop
- Applicable to even unstable systems and the systems with
- The point (-1,0) corresponds to AR=1 and PA=-180°.
- Negative N indicates the encirclement of (-1,0) in


Korea University 10-15

CHE302 Process Dynamics and Control


GM and PM

Korea University 10-16

CLOSED-LOOP FREQUENCY RESPONSE

Closed-loop amplitude ratio and phase angle

For set point change,

- M should be unity as $w \rightarrow 0$. (No offset)
- *M* should maintain at unity up to as high a freq. as possible.
 (rapid approach to a new set point)
- A resonant peak (M_p) in M should be present but not greater than 1.25. (large w_p implies faster response to a new set point)
- Large bandwidth (w_{bw}) indicates a relatively fast response with a short rise time.

CHE302 Process Dynamics and Control

Korea University 10-17

ROBUSTNESS

• Definition

"Despite the small change in the process or some inaccuracies in the process model, if the control system is insensitive to the uncertainties in the system and functions properly."

- The robust control system should be, despite the certain size of uncertainty of the model,
 - Stable
 - Maintaining reasonable performance
- Uncertainty (confidence level of the model):
 - Process gain, Time constants, Model order, etc.
 - Input, output
- If uncertainty is high, the performance specification cannot be too tight: might cause even instability

Korea University 10-18