What 1s Fluid Mechanics ?

— A branch of applied physics that is concerned with the motion of fluids (liquid or

gas) and the forces associated with that motion

— A branch of mechanics or physics that seeks to describe or explain the nature of

physical phenomena that involve the flow of liguids or gases

Scope of Fluid Mechanics

— hydraulics

— aircrafts




Why Process Fluid Mechanics ?

emphasis 15 on the problems associaled with the process indusines
examples:
IT: - semiconductor device fabncation
chemical vapor deposition (CVD)
— hard disk drive
(microfluidics)
(hiomedical flow device)
(DNA chip)
BT: — blood flow
— microcirculation
- stenosis
Food: — ice cream
- chocolate
(drop deformation)
Industrial: - agitated tank
— extruder
Fundamentals:
— pipe flow, particulate flow
- contraction flow
— flow around an obstacle



Why Process Fluid Mechanics ?

Why Chemical Engineering ?
Chemical Engineering 1s what chemical engineers do.
— material/process

— chemisilry/physics/mathemalics

Why Transport Phenomena
~ fluid mechanics (momentum transfer)
— heat transfer

- mass transfer

Why Process Fluid Mechanics
— fundamentals
— industrial
- design
modelling
CNgZINecring sSense

insight for solving the physical problems



What 1s Fluid ?

solid / liquid / gas
clastic / viscous
Hookean solid / Newtonian [luid

non—MNewtonian fluid

viscoelastic

Song of Deborah , Judges V.5
"The mountains flowed at the presence of the Lord,”

processing of water drop during the inverval of 10 Ygec

characteristic time of the material
»eborah oumber - ------------------------——-——-

characteristic time of the process

charactenstic time of the matenal

water 10 “sec , polymer 10 to 10'sec , glass 10°sec , mountain 10"sec



Semiconducior Device Fabrication
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Fig. 6.3-4 Semiconductor device fabrication. (Redrawn from E. S. Yang, Fundamentals
of Semiconductor Devices, Copyright 1987, McGraw-Hill, New York, Reproduced with
permission of McGraw-Hill.)



Chemical Vapor Deposition (CVD)
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Figure 8.2.2 (a) The bell jar reactor and (b) a geometrical simpli-
fication of the boundaries for numerical simulation of the

flow field.



Chemical Vapor Deposition (CVD)
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Figure 8.2.3 Streamlines for gas flow through an isothermal
bell jar reactor.



Hard Disk Drive
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Hard Disk Drive
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Blood Flow

arteriole’

D

Mormal Heart

red = oxyoenated blood
blue= unoxyeenated blood -16. The mjcrocirculation, which includes the arterioles and the capillary bed. Note the
1ce of arteriolar-venule (AV) shunts, which can open or close to increase the amount of

actually in the capillary bed.



Blood Flow

40070% —>

Fig. 2.25 Axial velocity profiles in a model of the carotid bifurcation. Dashed lines in the sinus denote the extent of
the region of reversed axial flow for different flow divisions for an u

pstream Reynolds number of 400. Note skewing of
profiles towards the flow divider. Reproduced from Giddens et al. (1985)



Blood Flow

Fisure 3.17:1. Flow separation from a curved wall. The laminar boundary layer has
a Reynolds number of 20,000 based on distance from the lcading edge (not shown ).
Because il is [ree of bubbles, the boundary layer appears as a thin dark line at the
left. Tt separates tangentially near the start of the convex surface, remaining laminar
for the distance to which the dark line persists, and then bacomes unstable and tur-
bulent. From Werlé (1974), an ONERA photograph, by permission.



Blood Flow
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FIGURE 2.5:4. Flow pattern within the sinus of Valsalva.
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Fiover LIT:2. Flow separation in g mode] of stenosis in a arcular cylindrscal tube
al Beynokds nembers off 31, 70, and 185, From Lee. L5, and Fung, Y.C. (1971} “Flow
in mmuniform small Blood vessel” Microvess Rex X I72-287. by permissson.
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Fig. 1.2 A diagram aof a red cell viewed from above and in cross-section.



* What is biomicrofluidics? * Application

Biotechnolog

| Hereditary disease DNA test |

' HLIrman blood test :

| Human disease alarm systerm |




DNA Chip

DMA Chip : Revolution on a Square Centimeter
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DNA Chip

Transparent upper
surface

Test cell

) Side view of drop
Analytical Reagent wicking into test cell
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Drop of
test liquid

Figure 4.5.3 Device in which a drop is drawn into a narrow planar channel
by capillary action (wicking).

Control Rails

Supply 1= LY .
drop Viscous shear Surface tension oW
force force vector

Figure 4.5.4 Force diagram for wicking of a drop into the channel.



Microfluidics

Abstract-This paper presants the fabrication and test of a micropump, whech can be attached to the
Micro ELISA(Micro Enzyme-Linked Immunosorbent Assay) for the immunity test from 2 disease. The
micropump consists of 3 pair of Al flap valves and 3 phase-change type actuator, The actuator is
composed of & heater, a silicone rubber diaphragm and a working fluid chamber. The diaphragm is
actuated by the vaporizatson and the condensation of the working fluid.  The micropump is fabncated by
thie snigotrope ebching, the boron diffusion and the metal evesporation, The forwsrd and the backward
flow characteristics of the flap valves illustrate the appropriatensss a5 a check valve, Also, the flow rate
of the mcropump is maaswed, ‘When the square wave input woltage of 8 %, 70 % duty ratio and 2 Hz =
appli=d to the heater, the maximum flow rate of the micropump 5 27 ulfmin for 2ero pressure difference

Fund-This work was performed as a part of a Micro-ELISA Development Project was jointly sponsored by
Micro/Nano System Integration Research Center and Eorga Soence & Enginesnng Foundation,
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Microftlmdics

Junctions where
Yy division occurs. |




lce cream

Ingredients

butter fat 12%, sweetner 16%, milk solids nonfat 12%,
emulsifier 0.3%, water 59.7%

refrigerant cold air
P4 ¥ 200 18°C 10 10 -20°C
o - _RO - - 0 -20°
Ty H*e%[oooooo] ) [oooo)
_—O uooo
~36u 45-50 um
50% frozen 75-80% frozen
Mix _ . _ Storage and
Ingredients Homogenize Aging Freezer Hardening Room Distribution
Lipid Ice _ Ice Ice
* crystallization * nucleation + growth * melting
* growth + growth
* ripening
Lipid Lipid
» crystallization * growth Lactose

* potential crystallization

FIG. 12.1 Phase transitions during manufacture and storage of ice cream.



Ice cream
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Chocolate

Ingredients
cocoa hquor 33%, sucrose 50%, cocoa butter 16%, lecithin 0.5%

FIG. 8.2 Schematic representation of the structure of chocolate with cocoa
solid particles in dark pattern and sucrose crystals in white. Lower magnifica-
tion (A) shows the cocoa butter as a continuous phase. Higher magnification
(B) shows that the cocoa butter forms discrete crystals in solid chocolate.

Fip, 120 Granube sie—Rae 3-S5, Maolze 10-25m, Tapios
4 10-255, Powmce 15100y, {Depemls on ongim,



Extruder
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Extruder (screw & screw
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Figure 4.1 Idealized cross-section of screw channel perpendicular to flights containing solid bed and melt pool



Fundamentals (flow around an obstacle)




Contraction Flow
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Contraction Flow

(&) Mewtorndan

| ' |
L %,
Y \
'H.::,_ 11 \'\J
x“m
-
(b) Wesl tel We=z

(d] Wae=3




Contraction Flow
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Drop Deformation
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Structure of Complex Fluids

Fluid at rest (ho shearing or deformation)
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Apgpgregation

sugar +
silicon oil

before shear
treatment
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after shear
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stabilized

Fig.3 Sugar aggregates in silicon oil (AK 1000)
 before and after shear treatment (y = 10 1/5);
stabilisation with lecithin emulsifier; (16)



Why Process Fluid Mechanics ?

Why Chemical Engineering ?
Chemical Engineering 1s what chemical engineers do.
— material/process

— chemisilry/physics/mathemalics

Why Transport Phenomena
~ fluid mechanics (momentum transfer)
— heat transfer

- mass transfer

Why Process Fluid Mechanics
— fundamentals
— industrial
- design
modelling
CNgZINecring sSense

insight for solving the physical problems



What 1s Fluid ?

solid / liguid / gas

clastic / viscous

Hookean solid / Newtonian [luid
non—Newtoman flhnd

viscoelastic

Song of Deborah |, Judges V.5
"The mountains flowed at the presence of the Lord,”

processing of water drop during the inverval of 10 Ysec

characteristic time of the material
ebvorah nvumber = -----------------—-~--—-—-——-—--——-
characteristic time of the process

charactenstic time of the matenal

water 10 “sec , polymer 107 to 10'sec , glass 10°sec , mountain 10"%sec



