3. Wetted wall column

4. Mass transfer in packed and fluidized beds

Sherwood, Pigford and Wilke(1975): packed beds with single-phase fluid and gas flows

$$j_D = 1.17 Re^{-0.415}$$
, $Re = \frac{d_p u_{avg} \rho}{\mu}$ for $10 < Re < 2500$,

Void fraction (
$$\varepsilon$$
): i) $\varepsilon j_D = \frac{1.09}{Re}$ for $0.0016 < Re < 55$

ii)
$$\varepsilon j_D = \frac{0.25}{Re^{0.31}}$$
 for $55 < Re < 1500$, iii) $\varepsilon j_D = \frac{2.06}{Re^{0.575}}$ for $90 < Re < 4000$

Mass transfer in both gas and liquid fluidized beds of spheres by Gupta and Thodos(1962)

$$\varepsilon j_D = 0.010 + \frac{2.06}{Re^{0.58} - 0.483}$$

5. Mass transfer with chemical reaction

- · Absorption of carbon dioxide from a gas phase into a liquid phase
- maximum amount of absorbed carbon dioxide vs. equilibrium concentration
- quantity of fluid required \downarrow as a result of chemical reaction, to form a nonvolatile carbonate
 - · Treatment of simultaneous mass transfer and chemical reaction is too complicated!

6. Capacity coefficients for industrial towers

- · Interfacial surface area and the corresponding area in various types of equipment
- · Capacity coefficient, $k_c a$ [moles of A transferd/(hr)(volume)(moles of A/volume)]

Packing coefficients(Table 30.1)

Packing	α	n
2-in. rings	80	0.22
1.5in. rings	90	0.22
1-in. rings	100	0.22
0.5in. ring	280	0.35
1.5in. saddles	160	0.28
1-in. saddles	170	0.28
0.5-in. saddles	150	0.28
3-in. spiral tiles	110	0.28

$$\frac{k_L a}{D_{AB}} = a \left(\frac{L}{\mu}\right)^{1-n} \left(\frac{\mu}{\rho D_{AB}}\right)^{0.5}$$

Values of the constant α and the exponent n

 $k_L a \sim \text{mass transfer capacity coefficient}$ [lb mole/hr ft³ (lb mole/ft³)]

 $L \sim \text{liquid rate [lb/hr ft}^2]$

 $\mu \sim \text{viscosity of liquid [lb/hr ft]}$

 $\rho \sim \text{density of liquid [lb/ft}^3]$

 $D_{AB} \sim \text{liquid mass diffusivity [ft}^2/\text{hr}]$