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Sabatier Principle

Interactions between the catalyst and the substrate should be "just right"; that is, neither too
strong nor too weak.
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Catalyst for Water Splitting
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» R : high cost, scarcity, and low stability

Electrochemical reactions require efficient materials with superior performance for reaching the
global outlook of energy conversion.
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HER, OER mechanism

Full water splitting Hydrogen evolution reaction mechanism

basic condition
*+H,0+e >H, +0H

(+)| I(‘) acidic condition
| Volmer : * + H* + e = Haps

Hyerovsky : H,, .+ H*+e &> H, H,,+H,0+e - H,+OH

Tafel : Habs + Habs 9 H2 I_labs + H abs % H2

® ()
e %?® o0

Volmer Heyrovsky Tafel

Oxygen evolution reaction mechanism
acidic condition basic condition

1ststep: * + H,0 - OH,4 + H* + & *+ OH - OH,p, + H*

3 step : O, + H,0 > OOH,, .+ H* + e | O, + H,0 > OOH, + H*

abs abs

4th step : 200H,, - O, + H,0 + O,

2nd step : 20H,,. - O, + H,0 ' OH,ps = Oy + H*
'OOH,,, > 0, +H*

Acidic : 2H* + 2e” > H,

Negati HER .
T Basicstam,0+ 2 >y + 200 " - o,
Acidic : 2H,0 = O, + 4H* + de @\ e e Y @
Basic : 40H = 2H,0 + 4e + O, ¢ W @“'@
______________________________________________________ + + 0 + + + T + + +HEn = + +| =+ = +
st nd rd th
Overall reaction 2H,0 - 2H, + O, 1" 3 22D S D i L
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Rational Design of Efficient Electrocatalyst for Full Water Splitting

across all pH conditions

Performance of Various Electrocatalysts for Water Splitting over a Wide pH range
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I Nitrogen and Fluorine co-doping in Graphene Quantum Dot for Water Splitting

Quantum confinement,

edge effect

2D
intralayer - » Strong covalent
interlayer - » Weak van der Waals
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Lateral sizes being reduced to
typically < 20nm

0D

€ Advantage of 0D materials (quantum dots)

Edge abundant features

Larger surface-to-volume ratio

Better solubility in both aqueous and nonaqueous solvent
Higher tunability in both aqueous and nonaqueous solvents
Higher tunability in physiochemical properties

Better amenability to hybridize with other nanomaterials

Ease to be doped and functionalized
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WL Harvesting &
2D/2D heterostructure Conversion
(rGO / g-C5N,)

Maximize
Active Sites
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I reduced Graphene Oxide Deposited on Silicon Nanowire for HER

€ Graphene @ Graphene oxide (GO)

* Low material cost

* Electrically insulating

* Reliable and exceptional synthesis
process

* Weak van der Waals interaction

* Synthesis by Hummer’s method

reduction
\ 4
= High thermal conductivity
(~5000Wm-1K") € Reduced Graphene oxide (rGO)
= Superior carriers mobility (200,000
cm2V-isi) * High electrical conductivity (resulted
= High transparency (~97.7%) from better graphitization of C=C r-
=  High theoretical specific surface conjugation of the graphene basal
area (~2630m2g?) plane)
= Zero band gap OH * Large specific surface area
* High electron mobility
* Reduced by hydrazine hydrate
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10
I Nitrogen doping in Graphene Quantum Sheets

Nitrogen doping effects

pyridinic N =  GQD with chemically bonded N atoms could alter
their electronic characteristics and offer more active

Quaternary N

sites
------------ / = carbon adjacent to an N atom can cause a positive
g shift in Fermi energy, which was a benefit for the
charge transfer

= Pyridinic : N atoms at the edge of six-membered ring

= Pyrrolic : N atoms at the edge of five-membered ring

= Graphitic : the substitutional site in graphene plane

= As the nitrogen doping time increases, the order of
pyridinic, pyrrolic and others dominant.

= The doping to pyridinic and pyrrolic sites increases
the work function

Pyrrolic N

Uk Sim et al., Energy Environmental Science 2015
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Nitrogen and Fluorine co-doping in Graphene Quantum Dot
for Water Splitting

Fluorine doping effects

* fluorine functionalization
could alter the electronic
state

= the bonding interaction
between C and F can change

1
i
i
e Semi=ionic * ionic, semi-ionic, and
i
i
i
i
i
i

F/Cratiod @ === ============== - C-F Binding energy

covalent configurations
owing to the strong
electronegativity of fluorine

Trigonal sp? Tetragonal sp? = With increasing F/C ratio, the
hybridize mEmmEmEmEmEmEmEEmEmmm————— ! hybridize C-F bonds change their
The Highest polarities state Fha.racterf rom fonic to semi-
ionic to covalent one.
“3R e C-F binding distance ------------- ~1.4A = the semi-ionic C-F bonding
doped with ~4% fluorine
Band gap Band gapJ could enhance the electrical
b . ion b properties of the electrode
——— ue. to interaction et'ween _ and facilitate electron
292~ ____F Qr'f_"t_a'_oi F_aﬂciq_-(lrl:_)lt_gl_oic_ _———— Metal-llc transport through the active
3.13 eV behavior material
—
Uk Sim* et al., Chemical Engineering Journal 2022 accepted
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N,F-GQDs for water splitting

Uk Sim* et al., Applied Surface Science 507 (2020) 145157
» AFM images of the GQDs dispersed of a SiO, substrate and height profiles
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@ cton @ oneen @ nivogen @ rone © AN average under 1.5 nm height of N,F-GQDs, which indicates the
number of layers in N,F-GQDs was about ~ 3 layers.

» TEM images and histogram showing the size distribution of GQDs

* Most of N,F-GQDs dispersed on
graphene sheet show a size distribution
from 2 to 10 nm with an average size of
8.7 nm.

* The lattice structure shown in the high-
resolution TEM image indicates the N,F-
GQDs are highly crystalline.
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Potential energy

Natural enzyme

Oxygen Evolution

Excited
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Nature 473, 55-60 (2011)

Science 303, 1831-1838 (2004)

2H,0 -5 O, + 4e~ + 4H"
PSIl and Mn,CaO¢ cluster

Hydrogen Evolution
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Nature 479, 249-252 (2011)
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C.japonica derived Sulfur-doped Activated Carbon

Biomass

Earch abundant

Low cost and renenue source

Wa japonica flower was applied to catalysts for operating electrochemical reactions without
emission of CO,.
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Metal anchored carbon quantum dots

Non-toxic

Environmentally friendly
High photostability

High chemical stability

Easy surface functionalization

High electric conductivity

Solar cell

Bio sensor
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Design of experiments (DoE)
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the design of experiments
(DoE) is considered to
discover superior
performance of the prepared
catalysts.

Machine learning: optimization method — Bayesian algorism
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