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Energy Storage System

Energy demand and consumption grows by fuel

; BP Energy Outlook: 2019 edition
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Discharge Time at Rated Power

World Energy Council

Energy Storage System

Electrical Energy Storage Systems
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Type of supercapacitor

Electrochemical double layer
capacitor (EDLC)

Electrode material

Carbon

Supercapacitors

High capacitance
Fast charging ability
Low temperature

Long life (15 years)

Industrial sector

High power density

Consumer

electronics sector

(ex. LED plash)

Charge storage mechanism

Electrochemical double layer (EDL),
non-Faradaic process

Automotive sector
(ex. Bus, tram,
ailway, military)

Energy sector

Merits/shortcomings

Good cycling stability
Good rate capability

Low specific capacitance
Low energy density

Pseudo capacitor

Redox metal oxide or redox polymer

Redox reaction,
Faradaic process

High specific capacitance
relatively high energy density
relatively high power density

Relatively low rate capability

A : Anode. : pseudo capacitance Anode : redox reaction High energy density
symmetric materials : ;

hybrid high power density

Cathode : carbon(EDLC) Cathode : EDL good cyclability

Hybrid S i i i i

i ymmetric Redox metal oxide / carbon . High energy density

capacitor composite Redox polymer / carbon Redox reaction plus EDL Moderate cost and moderate stability
. Anode : Li-insertion material Anode : Lithiation/delithiation High energy density
Battery-like . ;
hvbrid High cost and requires electrode
ybri Cathode : carbon Cathode : EDL material capacity match




Electrochemical double layer capacitor (EDLC)
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% € o @ (a) Helmholtz model (b) Gouy-chapman model (c) Stern model
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o HY 2 ot *  An electric double layer is a structure appearing
2 I o) E ! = I when a charged object is placed into a liquid.
E O E i E i *  The balancing counter charge for this charged
% £ O 4 24 | surface will form on the liquid, concentrating near
8 g § i § # | the surface.
o 5 = = @ * There are several theories or models for this
ﬁ ¥ i, % ¥ i ; interface between a solid and a liquid.
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17 L + Y, : electrode potential
T T Céé)% | T %P (P © : IHP : inner Helmholtz plane
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s e e explained in the Stern model.
@é& Solvated cation @ Anion
I - ], = * Non faradaic process
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+ —_ - Al electrode/electrolyte interface as charge
- - T/ separation
@@ =+ @@ e 2l ) + There is no charge transfer between electrode
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@@ + @ @ e- 2l * Intrinsically high power devices(short response
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, stability(~10°)
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charging discharging

Carbon aerogels, Carbon nanotubes,...)



Pseudo capacitor
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Redox reaction Intercalation

Pseudocapacitance is a Faradaic charge storage mechanism based on fast and highly reversible surface or
near-surface redox reactions.

The electrical response of a pseudocapacitive material is ideally the same as the one of a double layer
capacitor, the state of charge changes continuously with the potential, leading to proportionality constant
that can be formally considered as capacitance.

Some materials can also store a significant charge in a double layer such as functionalized porous carbons,
combining thus both capacitive and pseudocapacitive storage mechanisms.

Faradic processes occurring together with EDL charge storage increase the specific capacitance of an
electrode.

The capacitance of a pseudocapacitor can be 10-100 times higher than that of an EDLC.

Nevertheless, the power performance of a pseudocapacitor is usually lower than that of EDLSCs, due to
the slower Faradic processes involved.



Hybrid Supercapacitor
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One electrode acts as EDLC forming a double layer at the
Electrode/Electrolyte interface

Another Electrode acts as Psuedo capacitor involving transfer
of charge between Electrode and Electrolyte by Redox Reaction
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Supercapacitor Mechanism

Supercapacitor reaction

charge discharge
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Calcuation for verifying own capacity at each reaction Calcuation for verifying full device capacitance

A

C _IA_t C IAt . If(fV(t)dt p— E
S mAV > m ~ 3600 X m At
Specific capacitance (F/g) Specific capacity (C/g) Energy density (Wh/kg) Power density (W/kg)

| : current density (mA/cm?), t: times (sec), m: loading mass (mg), V: applied potential (v)



Calculation Method for Confirming Mechanism

peak current
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\i * Linear: electrochemical double layer capacitor (EDLC)

12
Ip VS. v

IIO VS. v

Non-linear: pseudo capacitor

\i * Linear: pSEUdO capacitor

|- peak current, v: scan rate

Non-linear: electrochemical double layer capacitor (EDLC)



Calculation Method for Confirming Mechanism

Log (peak current,
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i: peak current, v: scan rate

~0.5: pseudo behavior
~1.0: EDLC behavior



Calculation Method for Confirming Mechanism

total contribution of capacitive and diffusion

Nature communications, 2019, 10.1: 1-9.
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Electrochemical Battery
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SEl formation

Safety

Electrochemical Stability

Rate Performance

Figure 1. SOA electrolytes for four energy storage technologies
ranked by their SEI formation, safety, price, rate performance, and
electrochemical stability.
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Theoretical Practical
Secondary e e
Batteries Specific energy  Specific Energy
density (Wh/kg) Density (Wh/kg)
Li-lon 387 ~160
Li-Air ~13,000 ~1,700
Zn-Air ~1,300 ~350
Li-Sulfur ~2,600 ~370




Electrochemical Battery

Intercalation/Insertion-type Electrode

discharge
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cathode Li* conducting anode
(LiCo0Oy,) electrolyte (graphite)

ex) Li* + CoO, < LiCoO,
* Theions are inserted in /deserted out
from layered(spinel) structure

* Key component/mechanism in lon
Batteries

Conversion-type Electrode

ORR
Discharge

OER
Charge

Electrolyte ‘

ex) M* + 0, <> MO, (M = Metal)

* Theions are converted to other form
through electrochemical reactions

* Key component/mechanism in Metal-Air,
Lithium-Sulfur Batteries



Batteries Limitations

Aluminum-Air

Zn-Air Battery

Formation of Alumina (Al,O,);
Considered more as Primary Battery
(Electrochemically)

Magnesium-Air

Formation of passivating layer, slow
kinetics

Iron-Air

Formation of Iron Oxide (FeO); causing
rapid sintering and pulverization

Li-air battery

* Better Reversibility

* High Operating moisture
Potential * Price
* High Capacity = High Competitiveness

Energy Density

Zn-air battery

e Stable towards >

* Closer to Practical
Applications

Table 1. Reaction equations and cell voltage of metal-air

battery
Metal air Reaction Cell
cells voltage, V

Znair?  2Zn+ 0,—> 2Zn0 1.65V
Liair'”?  2Li+0,— Li,0, 296V
Al air'® 4ﬂ Z i%);i{zo H40H 275V
Mgair®  2Mg+ 0,+ 2H,0 — 2Mg(OH),  3.09 V
Feair” 2Fe+ 0,+2H,0 — 2Fe(OH), 125V

Ryu, S. K. and Jin-Soo Park, Journal of the Korean Electrochemical Society, (2013)
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While the difference rely on
the metal anodes, the key
compartment of the Metal-
Air battery systems is the
cathode.



