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Ammonia Production using Water and N, under RT and 1atm

N, |
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+
2-propanol:water = (9:1, v/v) N2+ 6H
Anode Cathode +6e
(Pt) (porous Ni) = 2NH 3

J. Electrochem. Soc. 2016, 163 (7) F610

- Porous Ni

- IPA:Water (9:1 v/v) 10mM H,SO, - Anodic compartment : 0.05 M H,SO,

(IPA: isopropyl alcohol)
- Ammonia production rate
(rypsn): 1.54x10°1 mol st ecm2
- Faradic efficiency (FE): 0.8 %
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Possible Strategies to Improve Selectivity

Limit the proton transfer rate by

Reducing the conc. of protons

in the bulk solution

Increasing the barrier for proton
transfer to the surface
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Generic Mechanisms for N, Reduction to NH,

Dissociative Pathway NH,
N, H H H HHH
| \ / x|/
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o
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| N
N N N H H H HHH
2 [ [l I | \ 7 \|/
N——>N—>N N—>N—>N—>N

%
Catal. Today 2016
Dissociative mechanism : N=N bond is broken before any hydrogenation take place.
— Haber Bosch process operates through a dissociative mechanism.
Associative alternating pathway : Hydrogenation events in each of the two nitrogen centres
—> One nitrogen is converted into NH; and the N=N bond is broken.
Associative distal pathway : Hydrogenation occurs on the furthest away from the surface

—> The release of one equivalent of NH; = metal nitrido (M=N) unit will be hydrogenated to give 2" NH,
6



Volcano Plot for Ammonia Production by DFT

0 T T T | T [ . I 0
| 1 |
d)i|c) . 1a) :b)
: i 1
I I
: I
|
I
! I
I I
I |
3 I
-1 A - 1
. l I r—
1 I
i d
I.
. — Dissociative (Flat) U
!I - == Associative (Flat) 4
*H |: @ -AG. *NH -> *NH, (Flat) '
S E | O 4G.N,, ->*NH (Flay N = 22
‘l O -AG.N, ->*2N (Flat) ol A
I: = Dissociative (Step) '...'3 )(,S/)(
I — == Associative (Step) .". .’u %
il @ -G, *NH,->NH, (Step) e @ N
d © -AG.N,, ->*NH (Step) W
| O -AG,N,, ->*2N (Step) 2K
'l
3 1 | A | I | : . 3
-3 -2 -1 0 1 \
AEN>:= [eV] N, dissocation

Phys. Chem. Chem. Phys., 2012, 14, 1235-1245

* The most active surfaces are Mo, Fe, Rh, and Ru, but hydrogen gas formation will be a
competing reaction reducing the faradaic efficiency for ammonia production.
* Sc, Y, Ti, and Zr bind N-adatoms more strongly than H-adatoms.



Ammonia Production by Metal Nitride

(a)Langmuir-Hinshelwood (B) Eley-Rideal mechanism (c) Mars-van Krevelen mechanism

mechanism Only one of the reactants adsorbs  The surface itself is an active part

Both reactants first adsorb onto onto the surface (reaction 1). in the reaction: one reactant forms

the surface (reaction 1 and 2), a chemical bond with the catalytic

before a reaction takes place. surface (reaction 1a), forming a
thin surface layer of Metal-
Reactant.
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CIRS(111)
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Metal nitrides can further enhance the catalytic
property by way of a Mars-van Krevelen mechanism.
 Thevacancy is likely refilled by N and thus the catalytic
cycle may continue to form the second NH;.
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Efficient Photocatalytic Nitrogen Fixation: Enhanced
Polarization, Activation, and Cleavage by Asymmetrical
Electron Donation to N=N Bond

Jili Yuan, Xuanying Yi, Yanhong Tang,* Meijun Liu, and Chengbin Liu*

Adv. Funct. Mater. 2019, 1906983  https://doi.org/10.1002/adfm.201906983
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Polarization by Asymmetrical Electron Donation

Enhanced Polarization, Activation, and Cleavage

Photocatalytic nitrogen (N,) fixation suffers from low efficiency due to the
difficult activation of the strongly nonpolar N=N bond. In this study, a Ru-Co
bimetal center is constructed at the interface of Ru/CoS, with S-vacancy on
graphitic carbon nitride nanosheets (Ru-Vs-CoS/CN). Upon adsorption, the
two N atoms in N, are bridged to the Ru—Co center, and the asymmetrical
electron donation from Ru and Co atoms to N, adsorbate highly polarized
N=N bond to double bond order. The plasmonic electric-field-enhancement
effect enables the Ru/CoS, interface to boost the generation of energetic
electrons. The Schottky barrier between Ru and CoS, endows the interface
with electron transfer from CoS, to Ru./ The Ru-end bound N at the Ru—Co center
is preferentially hydrogenated. As a result, the Ru-Vs-CoS/CN photocatalyst
shows an NH; production rate of up to 0.438 mmol g~! h™', reaching a high
apparent quantum efficiency of 1.28% at 400 nm and solar-to-ammonia effi-
ciency of 0.042% in pure water under AM1.5G light irradiation.

Nonpolar N2 molecules are
adsorbed to the Ro-Co center of the
Ro-CoS catalyst.

N2 is polarized by electrons
asymmetrically supplied at the
center of Ru-Co.

Ru-CoSx with S-vacancy catalysts
form a Schottky barrier between Ru-
Co and the plasmonic effect
resulting from the nanoscale.

Therefore, N bonded to Ru- first
undergoes hydrogenation.

Adv. Funct. Mater. 2019, 1906983  https://doi.org/10.1002/adfm.201906983
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Polarization by Asymmetrical Electron Donation

Proposed pathway on Ru-Vs-CoS/CN
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Scheme 1. Proposed photocatalytic N,RR pathway on Ru-Vs-CoS/CN.

Adv. Funct. Mater. 2019, 1906983

Nonpolar N2 molecules are
adsorbed to the Ro-Co bimetal
center of the Ro-CoS with S-
vacancy catalyst.

Asymmetrical electron donation
from Ru-Co atoms serves to N2
adsorbate highly polarized triple N
bond.

Plasmonic metals(Ru- nanoparticle)
donate energetic electrons to N2
adsorbates.

Plasmonic Ru/CoS interface
enhances light absorption to
produce energetic charge-carriers,
accelerates charge separation and
transfer, and thus kineticaaly
facilitates N2 fixation.

https://doi.org/10.1002/adfm.201906983
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Polarization by Asymmetrical Electron Donation

DFT calculations
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(a) shows adsorption energies of
N2 on single sith of Ru, Co (or S-
vacancy) in CoSx, and on Ru-Co
center at Ru/CoSx interface.

(b) show differential charge
density of Ru/CoSx interface

(c ) show free energy of HERs on
Ru and Co (or S) in CoSx. The HER
was limited by *H adsorption on
the Co of CoSx and by *H
desorption on the S of CoSx

(d) show N—N distances of free N2
and intermediates during
hydrogenation starting from the N
on Ru or Co

Adv. Funct. Mater. 2019, 1906983  https://doi.org/10.1002/adfm.201906983



https://doi.org/10.1002/adfm.201906983

Polarization by Asymmetrical Electron Donation

DFT calculations
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Polarization by Asymmetrical Electron Donation
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Polarization by Asymmetrical Electron Donation
FT-IR analysis
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=  Fourier transform infrared (FT-IR) spectra reflect the characteristic features of g-C3N4.
= The C-N peak slightly shifts from 813.2 cm™ for CN to 812 cm™ for Vs-CoS/CN and Ru-Vs-CoS/CN.

® Jtindicate a decreasing electron cloud density of N due to the coordination of lone pair electrons of sp3-N
with the unoccupied d orbitals of Co or Ru.

Adv. Funct. Mater. 2019, 1906983 https://doi.org/10.1002/adfm.201906983
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Polarization by Asymmetrical Electron Donation
UV-vis-NIR absorption and FDTD-simulation
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Polarization by Asymmetrical Electron Donation
Photocatalytic results
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Figure 4. Photocatalytic N fixation: a) UV—vis absorption spectra of reaction solution in the first 1 h (solid lines for full spectrum; dash lines for light
>420 nm) and b) NH; production rates. Conditions: 200 mW cm2, methanol sacrificial agent. ¢) AQEs (blue dots) for N; fixation over Ru-Vs-CoS/CN
in pure water under monochromatic light irradiation in reference to its UV-vis spectra (green line). d) N,-TPD profiles of the photocatalysts.
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Theoretical Strategies to Overcome ENRR

Operando Oxygen Vacancies for Enhanced Activity
and Stability toward Nitrogen Photofixation

Tingting Hou, Yu Xiao, Peixin Cui, Yining Huang, Xiaoping Tan, Xusheng Zheng,*
Ying Zou, Changxi Liu, Wenkun Zhu, Shugquan Liang,* and Liangbing Wang*

Photocatalysts with oxygen vacancies (OVs) have exhibited exciting
activity in N, photofixation due to their superiority in capture and
activation of N,. However, the surface OVs are easily oxidized by seizing
the oxygen atoms from water or oxygen during the catalytic reaction.
Here, it is reported that the grain boundaries (GBs) in nanoporous WO,
induce plenty of operando OVs under light irradiation to significantly|
boost catalytic activity toward N, photofixation. Impressively, nanoporous
WO; with abundant GBs (WO;-600) exhibit an ammonia production rate
of 230 umol g, 7' h™! without any sacrificial agents at room temperature,
17 times higher than that for WO, nanoparticles without GBs. Moreover,
WO;-600 also manifests remarkable stability by maintaining nearly =100%
catalytic activity after ten successive reaction rounds. Further mechanistic
studies reveal that both OVs and GBs regulate the band structures of WO,
nanocrystals, as well as favor the delivery of photogenerated electrons
to adsorbed N, by enhancing W-O covalency. More importantly, plenty
of operando OVs induced by GBs generate during catalytic reaction,
directly contributing to the excellent catalytic performance for WO3-600.
This work opens a novel avenue to developing efficient photocatalysts by
Adv. Energy Mater. 2019, 9, 1902319
construction of operando OVs. https://doi.org/10.1002/aenm.201902
319
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Theoretical Strategies to Overcome ENRR
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Figure 5. The adsorption configuration of N; molecule on the surface of a) WO3(010) and b) WO3(010)-Vo. ¢) N-TPD profiles of WO;/W-400, WO3-600,
WO3-800, WO3-NPs, and WO;-600 after the treatment with light. d) In situ DRIFT spectra recorded during the photocatalytic N, fixation over WO;-600.
e) The possible reaction pathways for N, photofixation over WO;-600. The red, light blue and dark blue balls represent O, W, and N atoms, respectively.
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Operando Oxygen Vacancies for Enhanced Activity
and Stability toward Nitrogen Photofixation

Tingting Hou, Yu Xiao, Peixin Cui, Yining Huang, Xiaoping Tan, Xusheng Zheng,*
Ying Zou, Changxi Liu, Wenkun Zhu, Shuquan Liang,* and Liangbing Wang*
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Operando Oxygen Vacancies for Enhanced Activity
and Stability toward Nitrogen Photofixation
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Figure 1. a) Schematic diagram for the synthetic process of the photocatalysts. b) SEM image, c) HAADF-STEM image, and d) HRTEM image of
WO3-600. The pictures of &) WO3/W-400 and f) WO;-600. g) O 1s XPS spectra, h) XANES spectra, and i) Fourier-transformed EXAFS spectra in R space
for WO;/W-400, WO;-600, WO;-800, and WO;-NPs (W foil was used as the reference).
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Figure 2. a) Photocatalytic NH; production rates over WO;-NPs, WO,/ W-400, WO;-600, and WO;-800. b) Time courses of the N, fixation over
WQO,-600 under irradiation of full spectrum and visible light (>400 nm). ) The amount of generated NH, with the reaction time catalyzed by 10 mg of
W0O;-600. d) "TH-NMR (400 MHz) spectra of solution after photocatalytic N, fixation by using WO;-600 as the photocatalyst in "*N; or >N, atmosphere.
e) Calculated AQEs for N; fixation over W0;3-600 under monochromatic light irradiation. f) NH; production rates for W0;3-600 and WO;3/W-400 over
the course of ten rounds of successive reaction.
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Figure 3. a) Diffuse reflectance UV-vis spectra, b) transformed Kubelka-Munk function and c) Mott-Schottky plots of the as-prepared photocatalysts.
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Figure 4. Quasi in situ XPS spectra of O 1s in a) WO;/W-400, b) WO;-600, and c) WO;-NPs before and after treatment. d) In situ ESR spectra of
WO;/W-400 and WO;-600 before and after light irradiation. In situ e) XANES and f) Fourier-transformed EXAFS spectra in R space of WO;-600.
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