Lecture 14. Membrane Separation Processes (2)

- Gas Permeation
	- Operation
	- Major applications
- Pervaporation
	- Major applications
	- Pervaporation processes
	- Materials and modules
	- Models for permeant transport

Gas Permeation (1)

- Low-molecular-weight species (MW < 50) are separated from small amounts of higher-molecular-weight species in feed gas
- The membrane, often dense but sometimes microporous, is permselective for the low-molecular-weight species
- Permselectivity depends on both membrane absorption and transport rate

F absorption and transport
 F f model (partial-pressure or
 F $p_{i_p} - p_{i_p} = \frac{P_{M_i}}{I_M} (p_{i_p} - p_{i_p})$
 F a permeate enriched in A and etimes microporous, is

-weight species

mbrane absorption and transport

iffusion model (partial-pressure or

ving force)
 $\frac{iP_i}{M}(p_{i_F} - p_{i_P}) = \frac{P_{M_i}}{I_M}(p_{i_F} - p_{i_P})$

ats are a permeate enriched in A and -weight species
mbrane absorption and transport
ffusion model (partial-pressure or
ving force)
 $\frac{1}{n} \frac{P_i}{M} (p_{i_F} - p_{i_F}) = \frac{P_{M_i}}{I_M} (p_{i_F} - p_{i_F})$
ts are a permeate enriched in A and
enriched in B • Solution-diffusion model (partial-pressure or fugacity driving force)

Prmeation (1)
\nies (MW < 50) are separated from small
\nr-weight species in feed gas
\nbut sometimes microporous, is
\nolecular-weight species
\nboth membrane absorption and transport
\nlution-diffusion model (partial-pressure or
\n
$$
N_i = \frac{H_i D_i}{l_M} (p_{i_F} - p_{i_F}) = \frac{P_{M_i}}{l_M} (p_{i_F} - p_{i_F})
$$
\n
$$
\Rightarrow
$$
 products are a permeate enriched in A and
\netentate enriched in B
\nnocr-perfect capacitor is generally not

- The products are a permeate enriched in A and a retentate enriched in B (**i)**

(**i**) are separated from small

ecies in feed gas

mes microporous, is

ght species

ane absorption and transport

sion model (partial-pressure or
 $(\mathbf{p}_{i_F} - \mathbf{p}_{i_F}) = \frac{\mathbf{P}_{M_i}}{\mathbf{I}_M} (\mathbf{p}_{i_F} - \mathbf{p}_{i_F})$

are **ICON (1)**

W < 50) are separated from small

tht species in feed gas

metimes microporous, is

ar-weight species

embrane absorption and transport

diffusion model (partial-pressure or

driving force)
 $\frac{H_i D_i}{I_M}(p_{i_F}$ *l* \leq 50) are separated from small
t species in feed gas
netimes microporous, is
-weight species
mbrane absorption and transport
liffusion model (partial-pressure or
iving force)
 $\frac{I_i D_i}{I_M}(p_{i_F} - p_{i_F}) = \frac{P_{M_i}}{I_M}($
- A near-perfect separation is generally not achievable
- If the membrane is microporous, pore size is extremely important because it is necessary to block the passage of species B

Gas Permeation (2)

- Since the early 1980s, applications of gas permeation with dense polymeric membranes have increased dramatically
- Since 1986, the most rapidly developing application for gas permeation has been air separation, for which available membranes have separation factors for $O₂$ with respect to $N₂$ of 3 to 7
- Gas permeation is also favorable for H_2 recovery due to high separation factors. The rate of permeation of H_2 is more than 30 times that for N_2
- Major applications
	- (1) Separation of H_2 from CH₄
	- (2) Adjustment of H_2 -to-CO ratio in synthesis gas
	- (3) O₂ enrichment of air
	- (4) N_2 enrichment of air
	- (5) Removal of $CO₂$
	- (6) Drying of natural gas and air
	- (7) Removal of helium
	- (8) Removal of organic solvents from air

Gas Permeation (3)

- Advantages of gas permeation compared to other separation techniques
	- low capital investment, ease of installation, ease of operation, absence of rotating parts, high process flexibility, low weight and space requirements, and low environmental impact
	- $-$ if the feed gas is already high pressure, a gas compressor is not needed
- Almost all large-scale applications for gas permeation use spiral-wound or hollow-fiber modules because of their high packing density
- Feed-side pressure is typically 300 to 500 psia, but can be as high as 1,650 psia
- When the feed contains condensables, it may be necessary to preheat the feed gas to prevent condensation as the retentate becomes richer in the high-molecular-weight species
- For high-temperature applications where polymers cannot be used, membranes of glass, carbon, and inorganic oxides are available, but are limited in their selectivity

Pervaporation (1)

• Pervaporation: a membrane technical method for the separation of mixtures of liquids by partial vaporization through a non-porous or porous membrane

• The phase on one side of the pervaporation is different from that on the other

- Feed to the membrane module is a liquid mixture at pressure P_1 , which is high enough to maintain a liquid phase
- The permeate side pressure P_2 , which may be a vacuum, is held at or below the dew point of the permeate, making it vapor
- A composite membrane is used that is selective for species A, but with some finite permeability for species B
- The dense, thin-film side of the membrane is in contact with the liquid side

Pervaporation (2)

- History of pervaporation
	- $-$ In 1917, the term of pervaporation was first reported
	- In 1961, the economical potential of pervaporation was shown
	- Mid 1970s, commercial applications were possible, when adequate membrane materials became available
- Major applications
	- (1) Dehydration of ethanol
	- (2) Dehydration of other organic alcohols, ketones, and esters
	- (3) Removal of organics from water
	- (4) Separation of close-boiling organic mixtures like benzene-cyclohexane

- Pervaporation is favored when the feed solution is dilute in the main permeant because sensible heat of the feed mixture provides the permeant enthalpy of vaporization
- If the feed is rich in the main permeant, a number of membrane stages may be needed, with a small amount of permeant produced per stage and reheating of the retentate between stages

Pervaporation (3)

• Pervaporation processes

Pervaporation (4)

- For water permeation, hydophilic membrane materials are preferred
- A three-layer composite membrane (porous polyester support layer, microporous poly-acrylonitrile or polysulfone membrane, dense PVA) is used for the dehydration of ethanol: chemical and thermal stability with adequate permeability
- Hydrophobic membranes, such as silicone rubber and Teflon, are preferred when organics are the permeating species
- Commercial membrane modules for pervaporation
	- Plate-and-frame type (almost exclusively): because of the ease of using gasketing materials that are resistant to organic solvents and the ease of providing heat exchange for vaporization and high-temperature operation
	- Hollow-fiber modules: used for removal of VOCs from wastewater; because feeds are generally clean and operation is at low pressure, membrane fouling and damage is minimal, resulting in a useful membrane life of 2-4 years

Pervaporation (5)

- A pervaporation module may operate with heat transfer or adiabatically,
with the enthalpy of vaporization supplied by feed enthalpy
• Heat balance in pervaporation
 $(m_{A_F} C_{P_A} + m_{B_F} C_{P_B}) (T_F T_0)$
= $[(m_{A_F} m_{A_P}) C_{P_A} + (m$ with the enthalpy of vaporization supplied by feed enthalpy
- Heat balance in pervaporation

Pervaporation (5)
traporation module may operate with heat transfer or adiabatically,
the enthalpy of vaporization supplied by feed enthalpy
balance in pervaporation
(
$$
m_{A_r}C_{P_A} + m_{B_r}C_{P_B})(T_r - T_0)
$$

= $[(m_{A_r} - m_{A_r})C_{P_A} + (m_{B_r} - m_{B_r})C_{P_B}](T_R - T_0)$
+ $(m_{A_r}C_{P_A} + m_{B_r}C_{P_B})(T_p - T_0)$
+ $m_{A_r} \Delta H_A^{\text{exp}} + m_{B_r} \Delta H_B^{\text{exp}}$
The enthalpies of vaporization are evaluated at T_p (dew point
at the permeate vacuum upstream of the condenser)
($m_{A_r}C_{P_A} + m_{B_r}C_{P_B}(T_r - T_R)$
= $(m_{A_r}C_{P_A} + m_{B_r}C_{P_B})(T_p - T_R)$
+ $m_{A_r} \Delta H_A^{\text{exp}} + m_{B_r} \Delta H_B^{\text{exp}}$

at the permeate vacuum upstream of the condenser)

+
$$
m_{A_p} \Delta H_A^{\text{vap}} + m_{B_p} \Delta H_B^{\text{vap}}
$$

The enthalpies of vaporization are evaluated at T_p (dew
at the permeate vacuum upstream of the condenser)

$$
(m_{A_F} C_{P_A} + m_{B_F} C_{P_B}) (T_F - T_R)
$$

$$
= (m_{A_P} C_{P_A} + m_{B_P} C_{P_B}) (T_P - T_R)
$$

$$
+ m_{A_P} \Delta H_A^{\text{vap}} + m_{B_P} \Delta H_B^{\text{vap}}
$$

Pervaporation (6)

se pressures on both sides of the r
follows the ideal-gas law
 $\mu_i^{(1)} = f_i^{(1)}/f_i^{(0)} = p_i^{(1)}/P_i^{s(1)}$
on the upstream side of the memb
 $p_i^{(1)} = \gamma_i^{(1)}x_i^{(1)}$
 \vdots $p_i^{(1)} = \gamma_i^{(1)}x_i^{(1)}$
and $p_i^{(1)} = \gamma_i^{(1)}x_i^{(1)}$ se pressures on both sides of the

follows the ideal-gas law
 $\mathbf{1}^1 = f_i^{(1)}/f_i^{(0)} = p_i^{(1)}/P_i^{s(1)}$
 $\mathbf{1}^0 = f_i^{(1)} \mathbf{x}_i^{(0)}$

on the upstream side of the membrane $p_i^{(1)} = \gamma_i^{(1)} \mathbf{x}_i^{(1)}$

vapor side of the membra **Pervaporation (6)**
 i als for permeant transport based on partial-vapor-ruse pressures on both sides of the membrane are le follows the ideal-gas law
 $a_i^{(1)} = f_i^{(1)}/f_i^{(0)} = p_i^{(1)}/P_i^{s(1)}$
 $a_i^{(0)}:$ permeant activity des of the membrane are low, the gas

w

(1) $a_i^{(1)}$: permeant activity for component i at the

upstream membrane surface (1)
 P_i^s : vapor pressure at the feed temperature

f the membrane is generally nonideal
 $a_i^{(1)}$ **1 1 a**_{*i*}⁽¹⁾ **: permeant activity for component i at the a**^{*s*} **i** *n*_{*s*}⁽¹⁾ **c** *p*_{*s*} **: vapor pressure at the feed temperature**
the membrane is generally nonideal
 $\mathbf{P}_i^{(1)} \times \mathbf{X}_i^{(1)} \math$ **i** if based on partial-vapor-pressure
 i description of the membrane are low, the gas
 $\frac{a_i^{(0)} \cdot \text{permeant activity for component i at the
upstream membrane surface (1)}_{p_i^* \cdot \text{vapor pressure at the feed temperature}}$

of the membrane is generally nonideal
 $p_i^{(1)} = \gamma_i^{(1)} x_i^{(1)} p_i^{s(1)}$

mbrane **i** is for permeant transport based on partial-vapor-p
use pressures on both sides of the membrane are la
 i follows the ideal-gas law
 $a_i^{(1)} = f_i^{(1)}/f_i^{(0)} = p_i^{(1)}/P_i^{s(1)}$
 i $a_i^{(0)}$: permeant activity for c
 i *i* isom both sides of the membrane are low, the gas

ideal-gas law
 $\begin{array}{l}\n\text{ideal-gas law} \\
\text{ideal-gas law}\n\end{array}\n\qquad\n\begin{array}{l}\n\frac{a_i^{(1)} \cdot \text{permeant activity for component i at the upstream, when the surface (1)} \\
\frac{a_i^{(2)} \cdot \text{vapor pressure at the feed temperature}}{P_i^r \cdot \text{vapor pressure at the feed temperature}}\n\end{array}\n\quad\n\begin{array}{l}\n\text{area of the membrane (2)} \\
\text{d}$ • Models for permeant transport based on partial-vapor-pressure Because pressures on both sides of the membrane are low, the gas phase follows the ideal-gas law **PEIVODOTOTION (6)**

s for permeant transport based on partial-vapor-

se pressures on both sides of the membrane are

follows the ideal-gas law
 $f_i^{(1)} = f_i^{(1)}/f_i^{(0)} = p_i^{(1)}/P_i^{s(1)}$
 $p_i^{(0)}$: permeant activity for
 p_i **Pervaporation (6)**
 i is for permeant transport based on partial-vapor-pressure

inuse pressures on both sides of the membrane are low, the gas
 *a*_{*i*}⁽¹⁾ = $f_i^{(1)}/f_i^{(0)} = p_i^{(1)}/P_i^{s(1)}$
 *a*_{*i*}⁽¹⁾ = $p_i^{($

$$
a_i^{(1)} = f_i^{(1)}/f_i^{(0)} = p_i^{(1)}/P_i^{s(1)}
$$

 $a_i^{(1)}$: permeant activity for component i at the upstream membrane surface (1) \boldsymbol{P}^s_i : vapor pressure at the feed temperature

Liquid on the upstream side of the membrane is generally nonideal stream side of the membrane is generally not
 $p_i^{(1)} = \gamma_i^{(1)} x_i^{(1)} P_i^{s(1)}$

de of the membrane (2)
 $\gamma_i^{(2)}$
 $\gamma_i^{(1)} x_i^{(1)} P_i^{s(1)} - y_i^{(2)} P_p^{(2)}$ **1 1 1 2 2** *^s*

$$
a_i^{(1)} = f_i^{(1)}/f_i^{(0)} = p_i^{(1)}/P_i^{s(1)}
$$
\n
$$
a_i^{(1)} = \gamma_i^{(1)} x_i^{(1)}
$$
\n
$$
a_i^{(1)} = \gamma_i^{(1)} x_i^{(1)}
$$
\n
$$
p_i^{(1)} = \gamma_i^{(1)} x_i^{(1)}
$$
\n
$$
p_i^{(1)} = \gamma_i^{(1)} x_i^{(1)} P_i^{s(1)}
$$
\nThe vapor side of the membrane (2)

\n
$$
p_i^{(2)} = y_i^{(2)} P_i^{(2)}
$$
\nng force:
$$
\left(\gamma_i^{(1)} x_i^{(1)} P_i^{s(1)} - y_i^{(2)} P_p^{(2)}\right)
$$

On the vapor side of the membrane (2)

$$
p_i^{(2)} = y_i^{(2)} P_P^{(2)}
$$

Driving force: $\left(\gamma_i^{(1)} x_i^{(1)} P_i^{s(1)} - y_i^{(2)} P_p^{(2)} \right)$

Permeant flux

$$
P_i \rightarrow I \rightarrow I
$$

\n
$$
P_i \rightarrow P_i \rightarrow P_i
$$

\n
$$
P_i \rightarrow \text{vapor pressure at the feed temperature}
$$

\n
$$
a_i^{(1)} = \gamma_i^{(1)} x_i^{(1)}
$$

\n
$$
p_i^{(1)} = \gamma_i^{(1)} x_i^{(1)} P_i^{s(1)}
$$

\nthe vapor side of the membrane (2)
\n
$$
p_i^{(2)} = y_i^{(2)} P_p^{(2)}
$$

\n
$$
p_i^{(2)} = y_i^{(2)} P_p^{(2)}
$$

\n
$$
P_i^{(1)} = \gamma_i^{(2)} P_i^{(2)}
$$

\n
$$
P_i^{(2)} = \gamma_i^{(2)} P_p^{(2)}
$$

\n
$$
P_i^{(2)} = \gamma_i^{(2)} P_p^{(2)}
$$

\n
$$
P_i^{(1)} = \gamma_i^{(2)} P_p^{(2)}
$$

\n
$$
N_i = \overline{P}_{M_i} (y_i x_i P_i^s - y_i P_p)
$$