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3. Partial Least Squares

We will cover ....
Multiple Linear Regression (least squares) [MLR]
Principal Component Regression [PCR]
Partial Least Squares or Projection to Latent Structures [PLS]



Quantitative modeling

e Relationships between two sets of multivariate data,

XandyY

e In process modeling and optimization

* Process variables
e Chemical composition
physical measurements
e Chemical structure

* |n multivariate calibration

signals (spectra)

"
\

vield / quality
quality

biological activity
reactivity properties
biological activity

concentrations

energy contents, etc



Quantitative modeling

e Starting point

X

N

N

Y

e Data set = tables (matrices) of

N rows (objects, samples, ...) and

K & M columns (variables,

properties, ...)
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Objects (cases, samples, rows, ...)
e Analytical samples

* Process time points

* Trials (experiment runs)

Variables (tags, properties,
columns, ...)

 Sensors (T, P, flow, pH, conc., ...)
* Spectra, chromatograms, ...
 guality measures, yields, costs, ...

X: what is “always” available
Y: what is “not always” available




Multiple linear regression

X |—ly

N N

Y = Xb
B =(xT><)‘1 XTY
e Can’t remember?

e Let’s review engineering statistics



Multiple linear regression

 Matrix representation of MLR (M=1)

y=Db, +bx +b,x, +---+b X +e

» y=Xb+e

e oo X T
1 Xll ml y — LJ’J] J_:lz .. .}?nJ
_ X Ko T m+1: number of coefficients
A= : : . c b" = [bO bl ' bm] n: number of data points

eT :Lel el "'E?H_J

1 Xl e X

n mn
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Multiple linear regression

e Example

— Fitting quadratic polynomials to five data points

y=b, +bx+b,x* +e

y=Xb+e |L0] [1 -10 10 e
0.5 Sl ] © Three unknowns
00(=|1 0.0 0.0 | b |+|€ ]| Fiveequations
05| [1 05 025|b,] |e,
20| [1 10 1.0 | €




Multiple linear regression

Solutions

Sum of squares of errors

y=Xb+e Sr:Zef:eTez(y—Xb)T(y—Xb)

ob

S g —— (X'X)b=X"y

1. LU decomposition or other methods to solve L.A.E
(X'X)b=X"y ="Ax=b"

2. Matrix inversion

(X'X)b=X"y =b=

(X'X)"




What if X’s are correlated

* High/no correlation between x; and x,

_ [1.0000 0.9999 . [1.0000 0.0
10.9999 1.0000 0.0 1.0000

(XTX)_lz'sooo.zs —4999.75} (XTX)_lz'l.o o.o}

| —4999.75  5000.25 100 1.0
e What if very small (measurement ) noises added to X
~_ [1.0001 0.9999 ~ [1.0000 0.0
X =S X =
0.9999 1.0000 0.0 1.0001

 What will happen to your MLR model?




What if X’s are correlated

e If high correlation among columns in X:
e unstable solutions for b
e predictions uncertain also

e What to do about it?

e Select uncorrelated columns from X

e Other issues:
e X has (measurement) error; MLR assumes it doesn't.
* MLR cannot handle missing values

PCR and PLS can avoid these drawbacks.



What if X’s are correlated

e Geometrically speaking

b

High correlation between x,; and x,
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Principal component regression

X AT ™R Iy

N N N

Two step model:

1. T=XP
2. ¥ =TB and B can be calculated as, B = (TTT)_1 TY
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Principal component regression

Two blocks, X and Y

Objective: model both X and Y and the relationship
between Xand Y

X summarized by PC scores (t’s) in matrix T
T=XP
PC scores used as independent variables in MLR

Y =Tb, where B = (TTT)_l TTY
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Principal component regression

e Building PCR model
e Indirect modeling (no direct modeling between x’s and y’s)
T=XP
Y =Tb, whereB=(T"T) T'Y

 Advantages:
e Columnsin T are orthogonal
e Can Handle missing values
T has much less error than X
e Less need for variable selection



Principal component regression
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Principal component regression

 Using a PCR model: can check consistency before
predicting y’s
* Check SPE,_ .,
e CheckT? .,

* Projection to latent structures (PLS) aka Partial least
squares
e better alternative to PCR
e Indirect modeling (inner model and outer model)

e |dea?
e Build a regression model between scores of X and Y.



Projection to Latent Structures (PLS)

X E’"T‘EY

» 2 blocks of data
» Often used to predict Y given X

» Also used for monitoring, optimization, product development
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Projection to Latent Structures (PLS)

e PLS
e Generalization of PCA to deal with the relationship X 2 Y

 Advantages over PCR:
e Has a model of Y space.
e Can handle correlationin.

e Assumes thereis error bothin XandinY



Projection to Latent Structures (PLS)

Extracts each component sequentially
Use cross-validation to check the number of components
Scores calculated from X and Y simultaneously

Makes engineering sense: system is driven (moved around) by the
same underlying latent variables

K A
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Projection to Latent Structures (PLS)

e Objective function for PCA: best explanation of X-
space
e Optimization formulation of PCA
* Objective function for PLS: has 3 parts
1. Best explanation of the X-space

2. Best explanation of the Y-space
3. Maximize relationship between X- and Y-space

PLS
PCA
Projection of X both
approximates X well and Projection of X is an optimal
correlates with Y (least approximation of X

squares fit)




Review of PCA formulation

 For PCA: best explanation of X-space:
argmax (t]t,) s.tpip, =1.0
P
 gives greater variance of t, (variance proportional to tt, )
e How do we get the scores?
* ta = Xapa



Back to PLS

1. PLS scores explain X:
* t, =X, w, for the X-space
e max(t]t,) subjecttoww, =10
2. PLS scores also explain Y:
* u,=Y,c, for the Y-space
* max(uju,) subjecttocic, =1.0
3. PLS maximizes relationship between X- and Y-space

e How?



PLS: maximize relationship

* We have two scores: t_, and u,
e t:summary of the X-space
e u_:summary of the Y-space

 The objective function of PLS:

e Maximizes covariance: Cov (t_, u,)

e This actually does three simultaneous things ...

Cov(t,.u,)=¢{(t,~t)(u,~T,)|

1
— _t;ua
N



PLS: maximize relationship

Correlation is easier to interpret: between -1 and +1

Cov(a,b)
Var (a) - v/Var(b)
Cov(a,b) = Corr (a, b) -/ Var(a) - y/Var (b)
Cov (ta,u,) = Corr (t,,u,) - /Var (t,) - y/Var (u,)

Cov (t,.u,) = Corr (ta.ua) VA A 1/u;u3

Corr(a,b) =
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PLS: maximize relationship

* Maximizing covariance between t, and u, is actually:

Cov (ts,uy) = Corr (ty, uy) - /tht, - \/u

1. Explaining X-space: given by tit,
2. Explaining Y-space. given by ulu,

3. Maximizing relationship between X- and Y-space: Corr (t,.u,)

» Footnotes:

» The above description is for SIMPLS (simple PLS)
» The other variant of PLS is a little different (NIPALS)
» SIMPLS = NIPALS when M =1
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PLS: geometric interpretation

e For each matrix X and Y, we
have K- and M-dimensional space.
e Each object is one point in the
X- and Y- space.

e Xand Y are two connected
swarm of points in these two
spaces.

AR

* Mean-centering and scaling:
same as in PCA.

e Calculate the average of each
variable.

* These averages are subtracted
from X and Y. And then, scaled to
unit variance (usually)
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PLS: geometric interpretation
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e 1t PLS component is a line in X- and Y- spaces, through the
average points, such that

1. The lines well approximate the data
2. The projection (t, and u,) are well correlated. (see next slide)
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PLS: geometric interpretation

tou, Slope =1.0
* The projected coordinates in
the two spaces (u; and t, inY

() .
o and X are correlated in the
inner relation
()
P .t U, =t, +h,
() 1

(h; us a residual)
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PLS: geometric interpretation
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* The 2" PLS component: lines in the X- and Y- spaces, through the average.

* The lines in X-space are orthogonal. Lines in the Y-space are not orthogonal.
* These lines improve the approximation and the correlation as much as
possible.
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PLS: geometric interpretation

tou, Slope =1.0 tou, Slope =1.0
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* The 2"9 projection coordinates (u, and t,) are correlated, but usually less
well than the first.
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PLS: geometric interpretation

On the model plane (SPE=0Y%

®
‘:,r"
P

outside of the usual range

=

e The PLS components together form planes (or hyperplanes) in X and Y-

space.
e The variability around the X-plane is used to calculate a tolerance interval
within which new objects similar or the training set (calibration set) will be
situated.
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PLS: geometric interpretation

For a new object,

*By inserting the x-values of a new object in X-space, we obtainitst; & t,,
which give predicted values of u; & u,, which give predicted values of Y.
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Projection to Latent Structures (PLS)

e Summary < A "

X PLS, T by
N N N

PT cT
WT

K, M: number of X, Y variables

N: number of objects

A: number of PLS components

k(=1,2,...,K), m(=1,2,...,M): indices for X and Y variables

T, U: score matrices of X and Y

P: loading matrix

W: X-weight matrix

C: Y-weight matrix




Projection to Latent Structures (PLS)

e Summary

1. Preprocessing

K

X

2. PLS projection of

data (X and Y) onto W’
hyperplanes

3. Scores, t and u are coordinates

in the hyperplanes.

4. Loadings p and weights w and ¢

Define the direction of the
hyperplane.

5. PLS is also a regression model.

A M

PLS

ﬁﬁfr*__y

CT

X=TP" +E
Y=UC' +F
Y =TC +F'
U=T+H
Y =XB+E

B=W(P'W) C



