- Tutorial 2: spectral example (tablet-spectra.csv)
 - 460 observations (tablets), NIR absorbance measured at 650 different wavelengths.
 - i.e., **X**: (460x650)

Matrix residuals

- $R_{a=1}^2 = 73.7\%$
- $ightharpoonup R_{a=2}^2 = 92.2\%$ (an additional 18.5%)
- $R_{a=3}^2 = 94.2\%$ (an additional 2.00%)

- Column residuals (from last lecture)
 - ► SPE is the row residual for X
 - Residuals also calculated for each column

▶ How well each column is explained by the model

Tutorial 2; Column residuals

Spectral example

Hotelling's T²

Hotelling's T²

- ▶ SPE: summarizes error for all K variables for a row
- $ightharpoonup T^2$: summarizes all A components for a row

$$T^2 = \sum_{a=1}^{a=A} \left(\frac{t_{i,a}}{s_a}\right)^2$$

- s_a^2 = variance of component a
- ► $T^2 \ge 0$
- ▶ Distance from the center to the projection on the plane
- ▶ T^2 has an F-distribution; we usually show the 95% confidence limit.

Tutorial 2: Hotelling's T²

Spectral example

Tutorial 2: Hotelling's T²

- ▶ If A = 2, at the 95% limit: $T_{A=2,\alpha=0.95}^2 = \frac{t_1^2}{s_1^2} + \frac{t_2^2}{s_2^2}$
- ► An equation for an ellipse

Score plot for tablet spectra

- Non-linear iterative partial least squares (NIPALS) algorithm
 - Start with X (preprocessed matrix of raw data)
 - ▶ We will show the algorithm for the ath component
 - 1. Select an arbitrary initial column for \mathbf{t}_a

- 2. Regression: every column from X (called x_k) onto t_a
 - ightharpoonup regress \mathbf{x}_k onto \mathbf{t}_a
 - ightharpoonup store regression coefficient as entry in $p_{k,a}$

 - ► OLS: $\mathbf{y} = \beta \mathbf{x}$, and $\widehat{\beta} = \frac{\mathbf{x}' \mathbf{y}}{\mathbf{x}' \mathbf{x}}$ ► here: $\mathbf{x}_k = p_{k,a} \mathbf{t}_a$, so $p_{k,a} = \frac{\mathbf{t}'_a \mathbf{x}_k}{\mathbf{t}'_a \mathbf{t}_a}$

- 2. Regression (continues)
 - ► Repeat regression for every column in X
 - ▶ In practice: $\mathbf{p}'_a = \frac{1}{\mathbf{t}'_a \mathbf{t}_a} \cdot \mathbf{t}'_a \mathbf{X}_a$
 - ▶ \mathbf{t}_a is an $N \times 1$ column vector
 - **X**_a is an $N \times K$ matrix
 - Subscript a? Explained later ...
- 3. Normalize the loadings
 - $ightharpoonup p'_a$ won't have unit length (magnitude)
 - ▶ Rescale it to magnitude 1.0
 - $\mathbf{p}_a' = \frac{1}{\sqrt{\mathbf{p}_a'\mathbf{p}_a}} \cdot \mathbf{p}_a'$

- 4. Regression again: every row in X onto p'_a
 - regress \mathbf{x}_i onto \mathbf{p}_a'
 - store regression coefficient as entry in t_{i,a}

 - ► OLS: $\mathbf{y} = \beta \mathbf{x}$, and $\widehat{\beta} = \frac{\mathbf{x}' \mathbf{y}}{\mathbf{x}' \mathbf{x}}$ ► here: $\mathbf{x}_i = t_{i,a} \mathbf{p}'_a$, so $t_{i,a} = \frac{\mathbf{p}'_a \mathbf{x}'_i}{\mathbf{p}'_a \mathbf{p}_a}$

4. Regression (continues)

- ► Repeat regression for every row in **X**
- ► In practice: $\mathbf{t}_a = \frac{1}{\mathbf{p}_a' \mathbf{p}_a} \cdot \mathbf{X}_a \mathbf{p}_a$
 - **t**_a is an $N \times 1$ column vector
 - **p**_a is an $K \times 1$ column vector

5. Converged?

- ightharpoonup to $m {f t}_a$ from previous iteration
- ▶ change less than 1×10^{-6} to 1×10^{-9} ? then stop

- 6. Store the score \mathbf{t}_a and loading \mathbf{p}_a vector
 - ▶ 200 or fewer iterations for convergence
 - ► Deflate:
 - removes variability captured
 - $E_a = X_a t_a p'_a$
 - $\mathbf{X}_{a+1} = \mathbf{E}_a$
 - ightharpoonup a = 1: $m X_a = preprocessed raw data$
 - ightharpoonup a=2: calculated on residuals $m f E_1$

Repeat steps 1 to 6 for every component

- Cross-validation
 - A general tool for avoiding over-fitting
 - Can be applied to any model

- 1. Rows of data (X) divided into G groups
- 2. PCA model estimated for data minus one group
- 3. Calculate residual $\mathbf{E}_{g,CV}$ for deleted group using the PCA model
- 4. Repeat 2 \sim 3 and get $\mathbf{E}_{G,CV}$

$$Q^{2} = 1 - \frac{\operatorname{var}(\mathbf{E}_{G,CV})}{\operatorname{var}(\mathbf{X})} = 1 - \frac{PRESS}{SS_{\mathbf{X}}}$$

 \times PRESS (prediction error sum of squares), SS_x (sum of squares of X)

- R²: how well training data explained by the model
- Q²: how well test data explained by the model

How many components are necessary?

- True number of principal components?
 - No one knows.
 - Recommendation
 - Use cross-validation as guide, and always look at a few extra components and step back a few components
 - then make a judgement that is relevant to your intended use of the model.
 - Models where we intend to learn from, or optimize, or monitor a process may well benefit from fewer or more components than suggested by cross-validation.

- Food data (Foods.csv)
 - Food consumption data from 16 EU contries
 - % households consuming different types of foods
 - Objectives: find any similarities / differences among countries using ProMV

Food data

• % households consuming different types of foods

		1	2	3	4	5	6	7	8	9	10
		Grain_Coffee	Inst_Coffee	Tea	Sweet	Bisc	Pa_Soup	Ti_Soup	In_Potat	Fro_Fish	Fro_Veg
1	Germany	90	49	88	19	57	51	19	21	27	21
2	Italy	82	10	60	2	55	41	3	2	4	2
3	France	88	42	63	4	76	53	11	23	11	5
4	Holland	96	62	98	32	62	67	43	7	14	14
5	Belgium	94	38	48	11	74	37	23	9	13	12
6	Luxembourg	97	61	86	28	79	73	12	7	26	23
7	England	27	86	99	22	91	55	76	17	20	24
8	Portugal	72	26	77	2	22	34	1	5	20	3
9	Austria	55	31	61	15	29	33	1	5	15	11
10	Switzerland	73	72	85	25	31	69	10	17	19	15
11	Sweden	97	13	93	31		43	43	39	54	45
12	Denmark	96	17	92	35	66	32	17	11	51	42
13	Norway	92	17	83	13	62	51	4	17	30	15
14	Finland	98	12	84	20	64	27	10	8	18	12
15	Spain	70	40	40		62	43	2	14	23	7
16	Ireland	30	52	99	11	80	75	18	2	5	3

Food data

		11	12	13	14	15	16	17	18	19	20
		Apples	Orang	Ti_Fruit	Jam	Garlic	Butter	Margarine	Olive_Oil	Youg	Crisp_Bread
1	Germany	81	75	44	71	22	91	85	74	30	26
2	Italy	67	71	9	46	80	66	24	94	5	18
3	France	87	84	40	45	88	94	47	36	57	3
4	Holland	83	89	61	81	15	31	97	13	53	15
5	Belgium	76	76	42	57	29	84	80	83	20	5
6	Luxembourg	85	94	83	20	91	94	94	84	31	24
7	England	76	68	89	91	11	95	94	57	11	28
8	Portugal	22	51	8	16	89	65	78	92	6	9
9	Austria	49	42	14	41	51	51	72	28	13	11
10	Switzerland	79	70	46	61	64	82	48	61	48	30
11	Sweden	56	78	53	75	9	68	32	48	2	93
12	Denmark	81	72	50	64	11	92	91	30	11	34
13	Norway	61	72	34	51	11	63	94	28	2	62
14	Finland	50	57	22	37	15	96	94	17		64
15	Spain	59	77	30	38	86	44	51	91	16	13
16	Ireland	57	52	46	89	5	97	25	31	3	9

• In ProMV,

Some properties of PCA models

- The model is defined by the loadings vectors, \mathbf{p}_1 , \mathbf{p}_2 , ..., \mathbf{p}_A ; each are a (K×1) vector, and can be collected into a single matrix, \mathbf{P} , a (K×A) loadings matrix.
- These vectors form a line for one component, a plane for 2 components, and a hyperplane for 3 or more components.
 This line, plane or hyperplane define the latent variable model.
- An equivalent interpretation of the model plane is that these direction vectors are oriented in such a way that the scores have maximal variance for that component. No other directions of the loading vector (i.e. no other hyperplane) will give a greater variance.

Some properties of PCA models

 This plane is calculated with respect to a given data set, X, an (N×K) matrix, so that the direction vectors best-fit the data.
 We can say then that with one component, the best estimate of the original matrix X is:

$$\hat{\mathbf{X}}_1 = \mathbf{t}_1 \mathbf{p}_1^T$$
 or equivalently $\mathbf{X} = \mathbf{t}_1 \mathbf{p}_1^T + \mathbf{E}_1$

• If we fit a second component:

$$\hat{\mathbf{X}}_{2} = \mathbf{t}_{2}\mathbf{p}_{2}^{T} \quad \text{or equivalently} \quad \mathbf{X} = \mathbf{t}_{1}\mathbf{p}_{1}^{T} + \mathbf{t}_{2}\mathbf{p}_{1}^{T} + \mathbf{E}_{2}$$

$$\mathbf{p}_{1}^{T} \quad \mathbf{p}_{2}^{T}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{p}_{1}^{T} & \mathbf{p}_{2}^{T} \\ \mathbf{p}_{1}^{T} & \mathbf{p}_{2}^{T} \end{bmatrix} + \dots + \mathbf{E}$$

$$\mathbf{E}$$

Some properties of PCA models

- The loadings vectors are of unit length: $\|\mathbf{p}_a\| = 1.0$
- The loading vectors are orthogonal to one another: $\mathbf{p}_i \perp \mathbf{p}_j$
- The variance of the t_1 vector must be greater than the variance of the t_2 vector, and so on.
- Each loading direction, \mathbf{p}_a , must point in the direction that best explains the data; but this direction is not unique, since $-\mathbf{p}_a$ also meets this criterion. If we did select $-\mathbf{p}_a$ as the direction, then the scores would just be $-\mathbf{t}_a$ instead. This does not matter too much, because $\mathbf{t}_a\mathbf{p}_a^T=(-\mathbf{t}_a)(-\mathbf{p}_a^T)$

Readings

History

- K. Pearson, "On Lines and Planes of Closest Fit to Systems of Points in Space," Philosophical Magazine, 2(6), 559–572. (1901)
- H. Hotelling,"Analysis of a Complex of Statistical Variables with Principal Components," Journal of Educational Psychology, 24, 417-441, 498-520, (1933)
- Papers by K. Karhunen, (1947) in Russian & M. Loeve, (1948) in French

NIPALS algorithm

 H. Wold, "Estimation of principal components and related models by iterative least squares," in *Multivariate Analysis* (Ed., Krishnaiah, P. R.), Academic Press, NY, pp. 391-420 (1966).

Cross-validation

• S. Wold, "Cross-validatory estimation of the number of components in factor and principal components models," *Technometrics*, **20**, 397-405, (1978).

Readings

General

- S. Wold, K. Esbensen, and P. Geladi, "Principal Component Analysis," *Chemometrics and Intelligent Laboratory Systems*, **2**, 37-52, (1987).
- T. Kourti and J. MacGregor, "Process analysis, monitoring and diagnosis using multivariate projection methods a tutorial, *Chemometrics and Intelligent Laboratory Systems*, **28**, 3-21, (1995).
- J. MacGregor, H. Yu, S. García-Muñoz, and J. Flores-Cerrillo, "Data-Based Latent Variable Methods for Process Analysis, Monitoring and Control". Computers and Chemical Engineering, 29, 1217-1223, (2005).