Tutorial 2

e Tutorial 2: spectral example (tablet-spectra.csv)

e 460 observations (tablets), NIR absorbance measured at
650 different wavelengths.

e i.e., X: (460x650)

Absorbance
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Tutorial 2

e Matrix residuals

N\

X +

X

Variance = 100% 2

73.7% [73.7%]
18.5% [92.2%]
1.99% [94.2%]

Pl

2

a=1: R
a=2: R
a=3: R

» R2_, =73.7%

» R2_, =92.2% (an additional 18.5%)
> R2_; =94.2% (an additional 2.00%)
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e Column residuals (from last lecture)

Tutorial 2

» SPE is the row residual for X

» Residuals also calculated for each column

K

X

» How well each column is explained by the model
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Tutorial 2; Column residuals

e Spectral example
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Hotelling’s T?

Hotelling’s T?

» SPE: summarizes error for all K variables for a row

» T2: summarizes all A components for a row
a=A 2

()
a=1 %a

s2 = variance of component a

T2 >0
Distance from the center to the projection on the plane
T2 has an F-distribution; we usually show the 95% confidence limit.

L B B
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Tutorial 2: Hotelling’s T?

Spectral example
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Tutorial 2: Hotelling’s T?

- 2 g2
» If A=2, at the 95% limit: T3_, \_go5 = 5_12 T 5_22
1 2

» An equation for an ellipse

Score plot for tablet spectra
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NIPALS algorithm

 Non-linear iterative partial least squares (NIPALS)
algorithm

» Start with X (preprocessed matrix of raw data)

» We will show the algorithm for the a™ component
1. Select an arbitrary initial column for t,

K

X

t

a
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NIPALS algorithm

2. Regression: every column from X (called x,) onto t,
> regress X, onto t,

> store regression coefficient as entry in py ,

!
> OLS:y=px and § =2

x'x

t;xk
tit,

> here: xx = pk,ata, SO pk,a =

ptf |
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NIPALS algorithm

2. Regression (continues)

» Repeat regression for every column in X
1
X
gfva
tit,
» t,isan N x 1 column vector

» Xsisan N x K matrix
» Subscript a7 Explained later ...

» In practice: p/, =

3. Normalize the loadings
» p, won't have unit length (magnitude)

» Rescale it to magnitude 1.0
1
/ /

> p, = P
TV
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NIPALS algorithm

4. Regression again: every row in X onto p/

>

>

>

regress X; onto p,

store regression coefficient as entry in t; ,

-~ x,f
OLS:y = fx, and 3 = ~~
x'x
! !
here: x; = t; ,p,, SO tj, = p;'“‘ !
| . papa
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NIPALS algorithm

4. Regression (continues)

» Repeat regression for every row in X
1

P.P;

» t.is an N x 1 column vector
» ps;Isan K x 1 column vector

» [n practice: t, = - X.,Ps

5. Converged?
» t, compared to t, from previous iteration

» change less than 1 x 107° to 1 x 107°7? then stop
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NIPALS algorithm

6. Store the score t, and loading p, vector

» 200 or fewer iterations for convergence

» Deflate:

» removes variability captured

Ea — Xa — taP;

Xa—l—l — Ea

a=1: X, = preprocessed raw data
a = 2: calculated on residuals E;

Yy v v ¥

Repeat steps 1 to 6 for every component
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Cross-validation

e Cross-validation
e A general tool for avoiding over-fitting
e Can be applied to any model

prediction

error

Modeling (training)

Te———
N
7

# of parameters in the model
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Cross-validation

Rows of data (X) divided into G groups
PCA model estimated for data minus one group

Calculate residual E, ., for deleted group using the PCA
model

4. Repeat2™~3andgetEg,
, . var(Egey) _q_ PRESS
var(X) SSy

% PRESS (prediction error sum of squares), SSy (sum of squares of X)

e R’ how well training data explained by the model
e Q% how well test data explained by the model



Cross-validation

e How many components are necessary?
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Cross-validation

True number of principal components?
e No one knows.

e Recommendation

* Use cross-validation as guide, and always look at a few extra
components and step back a few components

* then make a judgement that is relevant to your intended use of
the model.
e Models where we intend to learn from, or optimize, or
monitor a process may well benefit from fewer or more
components than suggested by cross-validation.



Tutorial 3

e Food data (Foods.csv)
e Food consumption data from 16 EU contries
* % households consuming different types of foods

e Objectives: find any similarities / differences among
countries using ProMV



Tutorial 3

 Food data
0 L] L]
* % households consuming different types of foods

1 2 3 4 5 6 7 8 9 10

Grain_Coffee |Inst Coffee |Tea |Sweet |Bisc |Pa_Soup |Ti _Soup |In_Potat |Fro Fish |Fro Veg
1 Germany 90 49 &8 19 a7 51 19 21 27 21
2 Italy 82 10 50 2 595 41 3 2 4 2
3 France 88 42 63 4 76 53 11 23 11 5
4 Holland 96 62 98 32 62 67 43 7 14 14
5 Belgium 94 38 48 11 T4 37 23 9 13 12
6 Luxembourg |97 61 86 28 79 73 12 T 26 23
T England 27 86 99 22 91 55 76 17 20 24
8 Portugal 72 26 I 2 22 34 1 5 20 3
9 Austria 55 31 61 15 29 33 1 5 15 11
10 Switzerland |73 72 85 25 3 69 10 17 19 15
11 Sweden 97 13 93 31 43 43 39 54 45
12 Denmark 96 17 92 35 65 32 17 11 51 42
13 Norway 92 17 83 13 62 51 4 17 30 15
14 Finland 98 12 84 20 64 27 10 8 18 12
15 Spain 70 40 40 62 43 2 14 23 T
16 Ireland 30 52 99 11 80 75 18 2 5 3




Food data

Tutorial 3

11 12 13 14 15 16 17 18 19 20

Apples |Orang |Ti_Fruit |Jam |Garlic |Butter |Margarine |Qlive Qil |Youg |Crisp_Bread
1 Garmany 81 (L] 44 71 22 91 85 74 30 26
2 Italy 67 71 9 46 80 66 24 94 o 18
3 France a7 54 40 45 88 94 47 36 57 3
4 Holland 83 89 61 81 15 | 97 13 53 15
5 Belgium 76 76 42 57 |29 84 80 83 20 5
6 Luxembourg |85 94 83 20 91 94 94 84 3 24
7 England 76 68 a9 91 11 95 94 a7 11 28
8 Portugal 22 a1 8 16 89 65 78 92 6 9
5 Austria 49 42 14 41 51 51 72 28 13 11
10 Switzerland |79 70 46 61 64 a2 48 61 48 30
11 Sweden 56 78 53 75 |9 68 3z 48 2 93
12 Denmark a1 72 20 64 11 92 91 30 11 34
13 Norway 61 72 34 91 11 63 94 28 2 62
14 Finland a0 o7 22 37 15 96 94 17 64
15 Spain 59 77 30 38 86 44 51 91 16 13
16 Ireland a7 52 46 89 5 97 25 31 3 9




Tutorial 3

* |[n ProMV,



Some properties of PCA models

 The model is defined by the loadings vectors, p,, p,, ---, Pa;
each are a (Kx1) vector, and can be collected into a single
matrix, P, a (KxA) loadings matrix.

e These vectors form a line for one component, a plane for 2
components, and a hyperplane for 3 or more components.
This line, plane or hyperplane define the latent variable model.

 An equivalent interpretation of the model plane is that these
direction vectors are oriented in such a way that the scores
have maximal variance for that component. No other
directions of the loading vector (i.e. no other hyperplane) will
give a greater variance.



Some properties of PCA models

 This plane is calculated with respect to a given data set, X, an

(N xK) matrix, so that the direction vectors best-fit the data.

We can say then that with one component, the best estimate
of the original matrix X is:

X, =t,p! orequivalently X=tp; +E,
If we fit a second component:

N

X, =t,p, orequivalently X=tp; +t,p; +E,




Some properties of PCA models

The loadings vectors are of unit length: ||p,|=1.0
The loading vectors are orthogonal to one another: P; L P;

The variance of the t, vector must be greater than the
variance of the t, vector, and so on.

Each loading direction, p,, must point in the direction that
best explains the data; but this direction is not unique, since
—p, also meets this criterion. If we did select —p, as the
direction, then the scores would just be -t instead. This does
not matter too much, because t,p] =(-t,)(-p; )



Readings

* History

e K. Pearson, "On Lines and Planes of Closest Fit to Systems of Points in
Space,” Philosophical Magazine, 2(6), 559-572. (1901)

* H. Hotelling,"Analysis of a Complex of Statistical Variables with
Principal Components,” Journal of Educational Psychology, 24, 417-
441, 498-520, (1933)

e Papers by K. Karhunen, (1947) in Russian & M. Loeve, (1948) in French
e NIPALS algorithm
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(1978).



Readings

e General

* S. Wold, K. Esbensen, and P. Geladi, “Principal Component Analysis,”
Chemometrics and Intelligent Laboratory Systems, 2, 37-52, (1987).

e T. Kourti and J. MacGregor, “Process analysis, monitoring and diagnosis
using multivariate projection methods — a tutorial, Chemometrics and
Intelligent Laboratory Systems, 28, 3-21, (1995).
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Based Latent Variable Methods for Process Analysis, Monitoring and
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