2. Principal Component Analysis

In the last lecture

- Visualizing multivariate data
- Geometric interpretation of PCA
- Mathematical interpretation
- Example(s)

What is a latent variable?

- All variables are not independent.
 - They are redundant images of few "latent" variables
 - Example: your health.

Your health

- No single measurement of "health"
 - blood pressure
 - cholesterol
 - weight
 - waist, hip (waist:hip ratio)
 - blood sugar
 - temperature, etc
- Combine these in some way? Trained doctor does this mentally.

Health is a latent (hidden) variable

Geometric Interpretation

- In summary,
 - PCA finds a few orthogonal axes of greatest variance in data. (K>>A)

Geometric Interpretation

• New latent variables are linear combinations of the original variables.

$$PC1 = a_1 X1 + a_2 X2 + a_3 X3$$

 $X = Mean + b_1 PC1 + b_2 PC2 + Error$

Constraints:

- Maximise the dispersion of samples along the latent variables (the variance)
- Orthogonality

Review of PCA

• What is score?

Review of PCA

Score plot – low dimensional summary of samples

Review of PCA

What is loading?

Coefficients in the linear combination PC1 = $a_1 X1 + a_2 X2 + a_3 X3$

In this lecture

- Tutorials & a bit more on PCA
- NIPALS algorithm
- Assignment #1

2. Principal Component Analysis

Tutorial 1: Food texture example (food-texture.csv)

5 quality attributes are measured from pastries:

- 1. Percentage oil
- 2. Density
- 3. Crispiness measurement: from 7 (soft) to 15 (crispy)
- 4. Fracture angle
- 5. Hardness: force required before it breaks

Tutorial 1

• Let's see in a univariate fashion

This data set has only five variables.

Tutorial 1: preprocessing

Mean-centering & unit variance scaling (why?)

- ▶ Centering: $\mathbf{x}_{k,\text{center}} = \mathbf{x}_{k,\text{raw}} \text{mean}(\mathbf{x}_{k,\text{raw}})$
- Scaling: $\mathbf{x}_k = \frac{\mathbf{x}_{k,\text{center}}}{\text{standard deviation}(\mathbf{x}_{k,\text{center}})}$
- Does not change relationships between variables.

* We will se how to calculate the Loadings = direction vector vectors later. 9.0 1st component loadings Oil Density Crispy Fracture Hardness $\mathbf{p}_{1}^{T} = \begin{bmatrix} 0.46 & -0.47 & 0.53 & -0.50 & 0.15 \end{bmatrix}$ $t_{1,i} = 0.46x_{\text{oil}} - 0.47x_{\text{density}} + 0.53x_{\text{crispy}} - 0.50x_{\text{fract}} + 0.15x_{\text{hard}}$ $x_{\text{oil}} = \frac{x_{\text{oil, raw}} - \text{mean}(x_{\text{oil, raw}})}{\text{standard deviation}(x_{\text{oil, raw}})}$

same for the other variables

- ► Sample 33:
 - ▶ Oil = 15.5%
 - ▶ Density = 3125
 - ► Crisp = 7
 - ► Fracture = 33
 - ► Hardness = 92
- ► Mark these points on the scatterplot matrix

- ▶ Sample 33: [Oil=15.5, Density=3125, Crispy=7, Fract=33, Hard=92]
- ▶ Sample 33: $t_1 = -4.2$
- $t_1 = 0.46x_{\text{oil}} 0.47x_{\text{density}} + 0.53x_{\text{crispy}} 0.50x_{\text{fract}} + 0.15x_{\text{hard}}$
 - $x_{\text{oil}} = (15.5 17.2)/1.59 = -1.07$
 - \times $x_{\text{density}} = (3125 2857)/124.5 = 2.15$
 - $x_{crisp} = (7 11.52)/1.78 = -2.53$
 - $X_{\text{fracture}} = (33 20.9)/5.47 = 2.2$
 - $X_{\text{hardness}} = (92 128)/31.1 = -1.16$

$$t_1 = 0.46(-1.07) - 0.47(2.15) + 0.53(-2.53) - 0.50(2.2) + 0.15(-1.16) =$$

-4.2 $t_1 = -0.50 - 1.01 - 1.35 - 1.1 - 0.17 = -4.2$

Each measurement contributes to the t_1 value.

- Examine sample 36: t₁ = 3.6
 Sample 36: 21.1% (Oil), 2570 (Density), 14 (Crispy), 13 (Fracture), 105 (Hardness)
 - Characteristics of a high t₁ sample?

Pastries with high t_1 values:

This is only a **correlation** - we can only guess what the true **cause** is. First component: explains 61% of the variability in the data.

The second loading vector:

- Interpretation?
- Explains 26% of additional variability
- ▶ Is orthogonal (independent) to p_1 . This means...
 - can adjust process conditions for hardness without affecting other pastry properties

• In 2-D plot

Interpretation of scores & loadings

Interpretation

Key equation:

$$t_{i,a} = x_{i,1}p_{1,a} + x_{i,2}p_{2,a} + \ldots + x_{i,k}p_{k,a} + \ldots + x_{i,K}p_{K,a}$$

- ► Time-series plots of the scores
 - patterns in the data
- Scatter plots: t_i vs t_j
 - clustering
 - outliers

Interpretation of scores & loadings

- ▶ Two variables important: $p_1 = [+1, -1, 0]$
- ▶ Or as a unit vector: $p_1 = [+0.707, -0.707, 0]$
- Unimportant variables: close to zero
- Important variables for a component:

Outliers

- Outliers
 - Observations poorly explained by the model
 - something new (or unusual) in this observation
 - Detected by using SPE or Hotelling's T².
 - SPE or Hotelling's T²: Complementary to each other.
- SPE (from last lecture)

$$SPE_{i} = \sqrt{\mathbf{e}_{i,A}^{T} \mathbf{e}_{i,A}}$$

$$(1 \times 1) = (1 \times K)(K \times 1)$$

$$\mathbf{e}_{i,A}^{T} = \mathbf{x}_{i}^{T} - \hat{\mathbf{x}}_{i,A}^{T}$$

$$(1 \times K) = (1 \times K) - (1 \times K)$$

Outliers

Tutorial 1: outliers

Contribution plot

- Tells why an observation differs from the others in
 - X score (**t**)
 - SPE(DModX)
 - DModY, or in the predicted Y. (PLS)
- For scores
 - Weights * (x_{outlier} x_{average})
 - Weights: **p**(loading), variable R², ...
- For SPE
 - Weights * e_{outlier,k}
 - Weights: **p**(loading), variable R², ...

Tutorial 1: contribution plot

