2. Principal Component Analysis

In the last lecture

— Visualizing multivariate data

— Geometric interpretation of PCA
— Mathematical interpretation

— Example(s)



What is a latent variable?

e All variables are not independent.
 They are redundant images of few “latent” variables
 Example: your health.

Your health

» No single measurement of "health”

blood pressure

cholesterol

weight

waist, hip (waist:hip ratio)
blood sugar

temperature, etc
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» Combine these in some way? Trained doctor does this
mentally.

Health is a latent (hidden) variable
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Geometric Interpretation

In summary,

 PCA finds a few orthogonal axes of greatest variance in
data. (K>>A)

PC2
PC1

Original Variable, X2

»

Original Variable, X1
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Geometric Interpretation

e New latent variables are linear combinations of the
original variables.

PCl=a; X1+a, X2 +a3 X3
X=Mean + b; PC1 + b, PC2 + Error
Constraints :

* Maximise the dispersion of samples along
the latent variables (the variance)

e Orthogonality
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Review of PCA

What is score?

The distance from the
Variable 3 (X;) mean along the PCis
A the score, t, for a

sample. PC1
Each pointis a

samplel \\. | 7 ,
. \
o o .2
[ ]

Variable 1
(X1)

Variable 2
(X2)
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Review of PCA

e Score plot —low dimensional summary of samples

PC2 pc1 We can now draw a 2-dimensional

plot of the projected objects by
using PC1 and PC2 as a new

¢ coordinate system.
‘ pe 2
cqreon PC1
® 0
\ S ...

This map of objects in the
Principal components plot
is called a score plot.

Scoreon PC 2
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Review of PCA

e What is loading?

Coefficients in the linear combination PC1 =a, X1 +a, X2 + a; X3

The direction of the line
is described by the

: Variable 3 (X
The d|ste.1nce represeths N (X3) loadings for X1,X2,X3.
the loading, p, for variable
1 (X1) PC1
[
Variable 1 (X1) Variable 2 (X2)

£ 2= Copyright ©



In this lecture

e Tutorials & a bit more on PCA
e NIPALS algorithm
e Assighment #1



2. Principal Component Analysis

e Tutorial 1: Food texture example (food-texture.csv)

5 quality attributes are measured from pastries:
Percentage oil

Density

Crispiness measurement: from 7 (soft) to 15 (crispy)
Fracture angle

A S

Hardness: force required before it breaks



Tutorial 1

e Let’s seein a univariate fashion

Matrix Plot of Oil, Density, Crispy, Fracture, Hardness
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e This data set has only five variables.
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Tutorial 1: preprocessing

Mean-centering & unit variance scaling (why?)

Raw data
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> Centermg: Xk.center — Xk ,raw — MEaAN (xk,raw)

» Scaling: xx =

with mean centering

100

-100

-300

Qil H
Density 4 t-=-----

Crispy

Fracture -

Xk center

Hardness

standard deviation (X center)

centered and scaled to unit variance

» Does not change relationships between variables.
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Tutorial 1: loadings & scores

© vectors later.
197 ] Ci i
=
g o
— o 7
8 o
59
2o

T

Qil Density Crispy  Fracture Hardness

p{ = 1046 —-047 0.53 -0.50 0.15}

t1.; = 0.46Xgi — 0.47Xgensity + 0.53Xerispy — 0.50Xfract + 0.15Xhard

Xoil, raw — rI'.lear'()"‘:i::nil, r'aw)
standard deviation(Xoil raw )
» same for the other variables

> Xoil =
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Tutorial 1: loadings & scores

» Sample 33:
» Oil = 15.5%
» Density = 3125
» Crisp =7
» Fracture = 33
» Hardness = 92

» Mark these points on the scatterplot matrix
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Sequence order
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Tutorial 1: loadings & scores

» Sample 33: [Oil=15.5, Density=3125, Crispy=7, Fract=33,
Hard=92]

» Sample 33: ;1 = —4.2

> 1 = 0.46x5i — 0.47 Xgensity + 0.53Xcrispy — 0.50Xfrace + 0.15Xpard

Xoil = (15.5 — 17.2)/1.59 = —1.07
Xdensity = (3125 — 2857)/124.5 = 2.15
Xerisp = (7 — 11.52)/1.78 = —2.53
Xiracture = (33 — 20.9)/5.47 = 2.2
Xhardness = (92 — 128)/31.1 = —1.16

t; = 0.46(—1.07)—0.47(2.15) +0.563(—2.53) — 0.50(2.2) +0.15(—1.16) =
42t =-050-101-135—-1.1—-0.17=—-4.2
Each measurement contributes to the t; value.

y v vy v ¥
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Tutorial 1: loadings & scores

» Examine sample 36: t; = 3.6

Sample 36: 21.1% (Qil), 2570 (Density), 14
(Crispy), 13 (Fracture), 105 (Hardness)

» Characteristics of a high t;1 sample?

Pastries with high t; values:

This is only a correlation - we can only guess what the true cause is.
First component: explains 61% of the variability in the data.
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Tutorial 1: loadings & scores

The second loading vector:
o

—

0.5

0.0

2nd component loadings
-0.5

-1.0

Qil Density Crispy  Fracture Hardness

» Interpretation?

» Explains 26% of additional variability

» |s orthogonal (independent) to p;. This means...

» can adjust process conditions for hardness without affecting other
pastry properties
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Tutorial 1: loadings & scores

* |In 2-D plot

2nd component scores [26%)
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15t component scores [619%]
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Interpretation of scores & loadings

* [nterpretation

Key equation:
li,a = Xi1Pl1,a + Xi2P2,a + .- -+ XikPk,a T --- T XiKPK,a
» [ime-series plots of the scores
» patterns in the data

» Scatter plots: t; vs t;

» clustering
» outliers

£ 2= Copyright ©

19



vy vy Vv oy

Interpretation of scores & loadings

X
- -
3

1st component

Two variables important: p; = [+1, —1, 0]
Or as a unit vector: p; = [+0.707, —0.707, O]

Unimportant variables: close to zero
Important variables for a component:
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Outliers

e Qutliers
e Observations poorly explained by the model
e something new (or unusual) in this observation

e Detected by using SPE or Hotelling’s T2.
e SPE or Hotelling’s T?: Complementary to each other.

e SPE (from last lecture)

SPE; — 1;“83;4&;?,4
(1x1) = (I1xK)(Kx1)

T _ JT _&oT
€a — Xi —Xjp

(I1xK) = (1xK)—(1xK)



Outliers

Xy
A

This is why SPE is also called
distance to model (DmodX).

SPE (DmodX)

On the model plane (SPE = 0)
outside of the usual range
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DModX[2]
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Tutorial 1: outliers

24

DCrit (0.05)

Back to food texture example

95% C.I

0.00

Hotelling’s T?: next example

£ 2= Copyright ©

23




Contribution plot

e Tells why an observation differs from the others in
e X score (t)
e SPE(DModX)
e DModY, or in the predicted Y. (PLS)

* For scores
 Weights * (x
* Weights: p(loading), variable R?, ...
* For SPE
e Weights * e
* Weights: p(loading), variable R?, ...

X

outlier ~ average)

outlier,k



DModX[2]

Tutorial 1: contribution plot
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food-tex.M1 (PC), Untitled, work set
Contribution DModX, Obs24, Xresid scaled, weight=RX, Comp2(Cum)
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