2. Principal Component Analysis

- Visualizing multivariate data
- Geometric interpretation of PCA
- Mathematical interpretation
- Example(s)

Principal Component Analysis

Visualizing Multivariate Data

▶ PCA considers a single matrix: **X**

- ▶ *N* observations
- ▶ K variables
- ▶ Which variables go in **X**?

Visualizing Multivariate Data

Temperature example

- Each variable defines an axis. A coordinate system can be made using all variables, called the variable space.
- Each object is a row in the data table (matrix) and is visualised as a point in the variable space.

 Each sample / object is represented as a point in the variable space.

 The whole data table constitutes a swarm of points in the variable space.

 We would like to find out more about the structure of this swarm.

• In many cases, the swarm of points has a specific shape in some direction.

- By picking the direction of largest elongation, this direction will pass through the center of the swarm.
- This line is called the first principal component (PC1) and points in the direction of the maximum data variation.

Project observations onto component (90 degrees)

- The first principal component may not be enough to describe the data variation.
- By projecting the samples onto the new coordinate system, there is still unexplained variance (combination of the individual residuals)
- If we repeat the projection process in the remaining part of the space, we will find the second principal component (PC2).

Second component: best-fit line; perpendicular to 1st component

Second component: project onto second component

- With 2 principal components we can build a plane onto which the projections of the swarm lie closer yet to the original variable space.
- We have found the 2dimensional 'window' which best describes the data.
- The process can be continued to find more PCs.

- In summary,
 - PCA finds a few orthogonal axes of greatest variance in data.

 New latent variables are linear combinations of the original variables.

$$PC1 = a_1 X1 + a_2 X2 + a_3 X3$$

 $X = Mean + b_1 PC1 + b_2 PC2 + Error$

Constraints:

- Maximise the dispersion of samples along the latent variables (the variance)
- Orthogonality

Mathematical Derivation

What has this done?
Break **X** down into 2 parts:

- projected points " on the plane"
- ▶ residual distance " off the plane"

Mathematical Derivation

• From linear algebra (or engineering mathematics),

Mathematical Derivation

$$t_{i,1} = \mathbf{x}_i^T \mathbf{p}_1$$

= $x_{i,1}p_{1,1} + x_{i,2}p_{2,1} + \dots + x_{i,k}p_{k,1} + \dots + x_{i,K}p_{K,1}$

- ▶ K separate terms: added up (i.e. linear combination) to give t_1
- ► Entire data set: **T** = **XP**

Predicted value for each observations

• $\hat{\mathbf{X}}_i$:projected version of \mathbf{X}_i

Predicted value for each observations

Residual vector:

$$\mathbf{e}_{i,A}^{T} = \mathbf{x}_{i}^{T} - \hat{\mathbf{x}}_{i,A}^{T}$$

$$(1 \times K) = (1 \times K) - (1 \times K)$$

Residual distance:

$$SPE_{i} = \sqrt{\mathbf{e}_{i,A}^{T}\mathbf{e}_{i,A}}$$
$$(1 \times 1) = (1 \times K)(K \times 1)$$

Square Prediction Error

$$\mathbf{e}'_{i,A} = \mathbf{x}'_i - \widehat{\mathbf{x}}'_{i,A}$$

▶
$$\mathsf{SPE}_i = \sqrt{e_{i,1}^2 + e_{i,2}^2 + \ldots + e_{i,K}^2}$$

- ▶ Smallest SPE: $SPE_i = 0$
- ► Calculate 95% or 99% confidence limit

Square Prediction Error

Distance from each observation to the model's plane:

- ▶ Does model explain that point well? SPE=0
- ▶ If SPE > 95% limit:
 - poorly explained by the model
 - something new in this observation
 - new phenomenon?

Square Prediction Error

Column Residual

- ▶ SPE is the row residual for X
- Residuals also calculated for each column

▶ How well each column is explained by the model

Column Residual

- $R_k^2 = \frac{\operatorname{Var}(\widehat{\mathbf{x}}_k)}{\operatorname{Var}(\mathbf{x}_k)}$
- ▶ The R_k^2 value:
 - ▶ is 0.0 when there are no components
 - increases for every every component added

Whole Matrix Residual

$$\mathbf{X} = \mathbf{TP}' + \mathbf{E} = \widehat{\mathbf{X}} + \mathbf{E}$$

▶ How well does the model fit the data?

$$R^2 = \frac{\mathsf{Var}(\widehat{\mathbf{X}})}{\mathsf{Var}(\mathbf{X})}$$

- $ightharpoonup R^2 = 0.0$ when there are no components
- $ightharpoonup R^2$ increases with every component added

$$R_{a=0}^2 > R_{a=1}^2 > R_{a=2}^2 > \dots > R_{a=A}^2 = 1.0$$

More about direction vectors

- "Direction vectors" = "Loadings"
- ▶ Link between the real-world and the latent-variable world

$$T = XP$$

 $(N \times A) = (N \times K)(K \times A)$

★ Statistically, loading vectors are eigenvectors of X^TX.

Then how about eigenvalues?

Preprocessing

Pre-processing the data: center and scale

▶ Centering: $\mathbf{x}_{k,\text{center}} = \mathbf{x}_{k,\text{raw}} - \text{mean}(\mathbf{x}_{k,\text{raw}})$

Remember

► Scaling: $\mathbf{x}_k = \frac{\mathbf{x}_{k,\text{center}}}{\text{standard deviation}(\mathbf{x}_{k,\text{center}})}$

$$Z = \frac{X - \mu}{\sigma}$$
 ?

▶ Does not change relationships between variables.

More on preprocessing Data

- Modifies the columns of X before building the model
- Center
- Scale
- Add transformations:
 - use log(T) instead of temperature, T
 - ▶ use 1/P instead of pressure, P
 - use sqrt(F) instead of flow, F

Add extra columns to X:

- heat balance
- dimensionless numbers
- ▶ square terms: x_1^2 , x_2^2 ,...
- ▶ interaction terms: x_1x_2 , x_1x_3 , x_2x_3 ...

How is PCA calculated?

- ► Eigenvalue decomposition
 - loadings are the eigenvectors of X'X.
 - once you have the eigenvectors, then T = XP
 - eigenvalues are the variances of the scores, s_a^2
- ► Singular value decomposition
 - $\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}' = \mathbf{T}\mathbf{P}'$
 - ightharpoonup scores, $T = U\Sigma$ and the loadings, P = V

How is PCA calculated?

- Non-linear iterative partial least-squares (NIPALS) algorithm
 - One component at a time
 - Handles missing data
 - Iterative; it always converges, but slow sometimes
 - Also called the Power algorithm
 - Excellent on large data sets
 - Google used this algorithm for their first search engine (called PageRank)

More details next.

How many components?

- ▶ Eigenvalues
 - sum of the eigenvalues = $\sum_{a=K}^{a=K} \lambda_a = K$
 - keep adding components as long as \(\lambda_a > 1 \)
- ▶ Plot R^2 for each component

▶ Use cross-validation

Called scree plot

Review of PCA

• What is score?

Review of PCA

Score plot – low dimensional summary of samples

Review of PCA

What is loading?

Coefficients in the linear combination PC1 = $a_1 X1 + a_2 X2 + a_3 X3$

Use of PCA

Improved Process Understanding

Use of PCA

Troubleshooting Process Problem

Use of PCA

Multivariate Stastiscal Process Control (MSPC)

In the next lecture

- Tutorials
- NIPALS algorithm
- A bit more on PCA
- Assignment #1