2. Principal Component Analysis

Visualizing multivariate data
Geometric interpretation of PCA
Mathematical interpretation
Example(s)



Principal Component Analysis

Main aim: data reduction

X — 1
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Visualizing Multivariate Data

» PCA considers a single matrix: X

K

X

» N observations
» K variables

» Which variables go in X7
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Visualizing Multivariate Data

Temperature example

Back left temperatures [K]
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Geometric Interpretation

e Each variable defines an axis. A

coordinate system can be made using all \Variable 3
variables, called the variable space. A
¢ Each objectis a row in the data table X3
(matrix) and is visualised as a point in ; E Object
the variable space. :
' Variable 2
Variablel Variable2 Variable 3 IE
Object 1
Object 2
Object 3
Object 4 Variable 1

£ 2= Copyright © 34



Geometric Interpretation

e Each sample / object is
represented as a point in
the variable space.

e The whole data table
constitutes a swarm of

points in the variable space.

e \We would like to find out
more about the structure of

this swarm.

Raw data .
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Geometric Interpretation

In many cases, the swarm of points has a specific shape in some direction.

Mean center and scale

Average 3
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Geometric Interpretation

e By picking the direction of
largest elongation, this
direction will pass through
the center of the swarm.

e This line is called the first
principal component (PC1)
and points in the direction of
the maximum data variation.
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Geometric Interpretation

Project observations onto component (90 degrees)
X
3

A
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Geometric Interpretation

e The first principal component
may not be enough to describe
the data variation.

e By projecting the samples onto
the new coordinate system, there
is still unexplained variance
(combination of the individual
residuals)

e |f we repeat the projection
process in the remaining part of
the space, we will find the second
principal component (PC2).
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Geometric Interpretation

Second component: best-fit line; perpendicular to 1st
component

>
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Geometric Interpretation

Second component: project onto second component
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Geometric Interpretation

The 2 components create a plane

e With 2 principal components
we can build a plane onto
which the projections of the
swarm lie closer yet to the
original variable space.

e \We have found the 2-
dimensional "window’ which
best describes the data.

* The process can be continued
to find more PCs.
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Geometric Interpretation

In summary,

 PCA finds a few orthogonal axes of greatest variance in
data.

PC2
PC1

Original Variable, X2

»

Original Variable, X1
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Geometric Interpretation

New latent variables are linear combinations of the
original variables.

PCl=a; X1+a, X2 +a3 X3
X=Mean + b; PC1 + b, PC2 + Error
Constraints :

* Maximise the dispersion of samples along
the latent variables (the variance)

e Orthogonality

£ 2= Copyright ©

44



Mathematical Derivation

What has this done?
Break X down into 2 parts:

» projected points " on the plane”

» residual distance " off the plane’
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Mathematical Derivation

 From linear algebra (or engineering mathematics),

‘ _ [vector) > pl
th ] (distance)
diacent length t; T
cosfh = adjacent ensth _ s and also cosf = Xi P1
hypotenuse 1% . [ l|Ip]]
i X pP1
[xi]| ||§f||||l31||
tii1 = X;P1

(1x1) = (1xK)(K x1)
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Mathematical Derivation

T
i1 = X;Pp1
= Xi1P11 T Xi2P21 T ... T XikPk1 T ... T XiKPK.1

» K separate terms: added up (i.e. linear combination) to
give t;

» Entire data set: T = XP
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Predicted value for each observations

* X, :projected version of X,

(lxﬁi.”) ; (1 x1)(1 x K)
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Predicted value for each observations

Residual vector:

T _ T cT
e.-',A = Xj —Xja

(1xK) = (I1xK)—(1xK)

Residual distance:

SPE; = 1/e;‘:-Ae,-,A

(1x1) = (1xK)(K x1)
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SPE after using 1 component

Square Prediction Error

> €)= X; — i;,A

» SPE; = /ey + e’ + ...+ ey
» Smallest SPE: SPE; =0
» Calculate 95% or 99% confidence limit
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Square Prediction Error

Distance from each observation to the model's plane:

» Does model explain that point well? SPE=0
» If SPE > 95% limit:

» poorly explained by the model
» something new in this observation
» new phenomenon?
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Square Prediction Error

y " SP:
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Column Residual

» SPE is the row residual for X

» Residuals also calculated for each column

K

X

» How well each column is explained by the model

N

— X

K

AN\

-‘\

X
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Column Residual

variance explained by model

» Remember R? =

Var(Xx)
Var(xy)
» The R value:

» is 0.0 when there are no components
» increases for every every component added

initial variance

» Rf =
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Whole Matrix Residual

»X=TP +E=X+E

» How well does the model fit the data?

Var(f()
2 _
= Var(X)

» R? = 0.0 when there are no components

» R? increases with every component added
2 2 2 2 _
» R >R_{>R:_,>...>R,_,=1.0
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More about direction vectors

» "Direction vectors’ = " Loadings"

» Link between the real-world and the latent-variable world
T = XP
(NxA) = (NxK)K xA)

% Statistically, loading vectors are eigenvectors of X'X.
Then how about eigenvalues?
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Preprocessing

Pre-processing the data: center and scale

Raw data with mean centering centered and scaled to unit variance
g | - - :
5] = T T T T T
g " = | _
8 8 . -
S T i T
- ; : o ! :
o — S | S : i
g 5 ¥ % 8 S F ¢ 8 ° & 3
I I I
» Centering: Xy center = Xk raw — MeaN (X raw) Remember
: Xk center
» Scaling: xx = : X—p
. Z= ?
standard deviation (X center) o

» Does not change relationships between variables.
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More on preprocessing Data

» Modifies the columns of X before building the model
» Center

» Scale

» Add transformations:

» use log(T) instead of temperature, T
» use 1/P instead of pressure, P
» use sqrt(F) instead of flow, F

Add extra columns to X:
» heat balance
» dimensionless numbers
» square terms: xZ, X3, ...

» interaction terms: XiX>, XiX3, X2X3
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How is PCA calculated?

» Eigenvalue decomposition

» loadings are the eigenvectors of X’'X.
» once you have the eigenvectors, then T = XP

» eigenvalues are the variances of the scores, sg

» Singular value decomposition
» X=UXV' =TP
» scores, T = UX and the loadings, P =V
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How is PCA calculated?

» Non-linear iterative partial least-squares (NIPALS)
algorithm

» One component at a time

» Handles missing data

» lterative; it always converges, but slow sometimes

» Also called the Power algorithm

» Excellent on large data sets

» Google used this algorithm for their first search engine

(called PageRank)

More details next.
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Proportion of variance explained (%)

How many components?

» Eigenvalues
a=K

» sum of the eigenvalues = Z Aa=K

=)
» keep adding components as long as A\, > 1
» Plot R? for each component

50 1

40 1

30 1

20 1

10 1
U' I II | 1

1 2 3 4 ] 5] 7 8 9 10
Component number

» Use cross-validation
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Review of PCA

What is score?

The distance from the
Variable 3 (X;) mean along the PCis
A the score, t, for a

sample. PC1
Each pointis a

samplel \\. | 7 ,
. \
o o .2
[ ]

Variable 1
(X1)

Variable 2
(X2)
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Review of PCA

e Score plot —low dimensional summary of samples

PC2 pc1 We can now draw a 2-dimensional

plot of the projected objects by
using PC1 and PC2 as a new

¢ coordinate system.
‘ pe 2
cqreon PC1
® 0
\ S ...

This map of objects in the
Principal components plot
is called a score plot.

Scoreon PC 2
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Review of PCA

e What is loading?

Coefficients in the linear combination PC1 =a, X1 +a, X2 + a; X3

The direction of the line
is described by the

: Variable 3 (X
The d|ste.1nce represeths N (X3) loadings for X1,X2,X3.
the loading, p, for variable
1 (X1) PC1
[
Variable 1 (X1) Variable 2 (X2)
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Use of PCA

 Improved Process Understanding

107

067 Competitor’s product

10 08 06 04 02 D0 02 04 06 08 10
Component 1
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Use of PCA

Troubleshooting Process Problem
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Use of PCA

Multivariate Stastiscal Process Control (MSPC)
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In the next lecture

Tutorials

NIPALS algorithm
A bit more on PCA
Assignment #1



