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Credits

* Prof. John MacGregor @ McMaster University
— “father” of multivariate statistics & industrial applications
— Course outline and topics covered are similar to his course
e Mr. Kevin Dunn @ McMaster University/ConnectMV

— Most of this lecture materials come from his

* Prosensus
— Providing one-year ProMV academic license for free.
— Providing materials for tutorials



1. Introduction

Extracting value from data

 Engineers can use large quantities of data:
Improve process understanding
Troubleshooting process problems

Improving, optimizing and controlling processes

Predictive modeling (inferential sensors)

A S

Process monitoring

We will come back to these in the next class



Throughout this course,

Data are collected in a table or matrix:

* Each row represents an observation
* Each column represents a variable

Variable Variable Variable
1 2 3
Object 1
Object 2
Object 3

Object 4

Convention in
Multivariate statistics



Data Characteristics

1920's to 1950's:
» small number of columns
» scatter plots

» time-series plots for each
column

» Shewhart and EWMA charts
» multiple linear regression
(MLR)

» carefully chose which columns
to measure

» independent
» low error
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Data Characteristics

Today
» Small N and small K

» expensive measurement, low frequency
» use scatterplots, linear regression, etc.

» Small N and large K

Near-Infrared spectrum
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» Cannot use MLR directly: K >N
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Data Characteristics

» Large N and small K

» Refinery, most chemical plants
» 2000 to 5000 variables (called tags) every second
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o el » Temperature probe

35 temperatures, 5 to 10 flow rates, 10 pressures, 5 derived
values
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Data Characteristics

» X and Y matrices

X Y

N N

» Predict one or more variables

» Could use MLR; fails for highly correlated data
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Data Characteristics

» 3D data sets and higher dimensions

» Very common situation now
» Image data (medical imaging)
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Left-to-right

» 4th dimension: time
» Very high redundancy: neighbouring pixels are similar
(spatially and in time)

£ 2= Copyright ©



Data Characteristics

» Batch data sets
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Variables
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Data Analysis Purpose

Summary & trouble-shooting

Predictive modeling (Regression)

Labeling or grading (Classification)

Process & product design

Scale-up & product transfer

QSAR (Quantitative Structure Activity Relationships)
And many more
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Examples: trouble-shooting

 Undetected process changes @ pulp digester

e Didn’t know when & why the changes occurred
e Data: 301 obs., 22 vars.

e 22 time-series plots? 231 Scatter plots?

uage | nay dog
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Examples: trouble-shooting

 PCA gives ONE excellent summary
* Two distinct clusters in a t,-t, score plot
Cluster 1: obs.1000~1030, 0bs.1192~1300
Cluster 2: 0bs.1031~1191
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PCA score plot
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Examples: trouble-shooting

 PCA gives candidates of root-cause

e During the period of cluster 2, vl and v2 fluctuated while
they were maintained constant level during the period of
cluster 1.
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PCA Contribution plot
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Examples: predictive modeling

e Measurement of biodiesel quality
e Spec. & methods given in ASTM

Praperty ASTM Method Limits Units
Calcium & Magnesium, combined EM 14338 3 maximum ppm (ugfg)
Flash Point (closed cup) D93 93 minimum degrees C

Alcohol Control (One of the following must be met)

1. Methanal Content EN14110 0.2 maximum % volume
2. Flash Point D83 130 minimum Degrees C
Water & Sediment D 2709 0.05 maximum % vol.
Kinematic Viscosity, 40 C D 445 1.9-6.0 mm‘/sec.
Sulfated Ash Da74 0.02 maximum % mass
Sulfur
& 15 Grade D 5453 0.0015 max. (15) % mass (ppm) .
$ 500 Grade D 5453 0.05 max. (500) % mass (ppm) Costs too mUCh time & moneyl
Copper Strip Corrosion D130 No. 3 maximum
Cetane D813 47 minimum
Cloud Faint D 2500 report degrees C
Carbon Residue 100% sample D 4530° 0.05 maximum % mass
Acid Number D 664 0.50 maximum mg KOH/g
Free Glycerin D 6584 0.020 maximum % mass
Total Glycerin D 6384 0.240 maximum % mass
Phosphorus Content D 4851 0.001 maximum % mass
Distillation, T90 AET D 1160 360 maximum degrees C
Sodium/Potassium, combined EN 14338 5 maximum ppm
Onxidation Stability EN 14112 3 minimum hours
Cold Soak Filtration Annex to DB751 360 maximum seconds
For use in temperatures below -12 C Annex to D6751 200 maximum seconds
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e PLS gives ONE accurate multivariate calibration

Examples: predictive modeling

model for biodiesel & impurities.

To Light Source

T —

-
<

5

To spectrometer
®

NIR spectrum

Quality

FAME, ]
Methanol <] ﬁi_ \,:
Free glytcerin, J%
Total glycerin,

Etc.. PLS model

Absorbance

NIR spectrum

Wavenumber(cm™1)

S Free Mono Di Tri
CoIESHENt Biodiesel | MEOH glycerin | Glyceride | Glyceride | Glyceride
R? value 0.999 0.994 0.995 0.996 0.994 0.994
16
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Issues faced with engineering data

» Size of the data

» rows: we can deal with this

>

columns: K(K — 1)/2 pairs of scatterplots

» Lack of independence

>

>

X X becomes singular
make-shift approach: pick a reduced set of columns

» Low signal to noise ratio

>

>

>

aim to keep our processes constant
little signal and high noise

data collected is mostly uninformative: constant, noisy,

has drift and error
Called "happenstance data”
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Issues faced with engineering data

Non-causal data

» Happenstance data is non-causal

» Only see correlation effects
» Good enough in many cases

» Opposite case: a designed experiment

» cause-and-effect
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Issues faced with engineering data

» Errors in the data
» Least squares: no error in X

» Missing data Can be up to 30% (or more!).

< B C 1] E F G H | I 1 K L M
Ton_in  KR30 IN KR40 IN PARM HS5_1 TOTAVF  PAR FAR r_FAR %WFe FAR %P FAR %Fe_malm
2 1 ] 0 4,65 16 B4.9314 D.2T75 25 0.0625 0240377
3 2 ] 0 4,65 1.25 B4.9314 4775 1075 00825  0.57B035
4 3 0 0 0 6.95 B4.8314 -3.5125 1.8125 00825 0.793651
5 4 ] 0 0 02 B4 5314 3.2375 0.0625 100
[ 5 0 ] ] 14625  B4.S314 1475 0.0625 100
7| 6 0 ] ] 41  BOBOTZ  -0BE2S 7.3125 00626 0847458
8 | 7 0 0 0 1.05 89,236 2375 (.75 0.0625 0.917431
9 8 0 0 ] 1.4 89,926 2025 6.3125 00625 0.980322
10 9 ] 0 0 902119 3225 6.5 0.0625 0.952381
11 10 ] 0 0 90,3292 30125 5.75 00825 1.07827
12 " 121181 275813 190.875 B2.975 90.4108 383706 307875 581.75  B5.77T4 G562 0.24 478
13 12 129056 2TEEG  Z0B.GTS SRO7S 004108 384281 314625 G015 65 BET &6.2 0.24 ara
14 13 126730 27TEEG 207376 B3 1BTE 004108 398212 312183 GBA.OGI  B5.2062 &6.2 0.24 ara
15 | 14 125044 278.063 204 525 ATATH 04108 384 506  ZOB.G2S A7, 75 65856 66,2 0,24 479
16 15 126551 279.563 180425 493125 Q04108 415381 4125 991,75 BR.0SET 6.2 024 474
A7 16 126818 276,112 194,625 6B2A7TS 004108 403706 310875 502  B5.56E3 6.2 0,24 479
18 17 12843 272,55 211275 SB.675 904108 405331 293125 575.5 66231 562 .24 478
19 18 1284 .41 2754 208275 50475 004108 420531 304125 580 EB5.6016 562 0.24 479
20 19 1272.79 27435 207.525 B2.675 90.4108 3569 300125 598,25  BB6.5%25 6.2 (.24 478
Z1 20 131711 ZE0E13 192225 EG17TE  O0A108  400BB1 311125 57076 BG507ES 6.2 0.24 ara
2z 21 127316 2B4.712 195375 405625 D04108 406480 201825 GE5.25  BET4ZT 66.2 0.24 478
23 | 22 1048730 213.113 166.538 325125 04,5204 339569 248563 401688 664218
24 | 23 13966 27.875 192.525 314125 94,5204 330044 264625 404438 651379
25 24 104906 222375 183.525 357125 04,5204 Z0BETS 470438 B4.0360
26 25 1067.5 215.625 177.825 33275 94,5204 238125 53525 692096
27 26 1038.95 211125 165.375 282125 04,5204 244313 400438 ©B6.7480
28 7 1067 95 HMB.025 168488 352625 04 5204 237063  4B5938  BTF2113
29 28 103306 M2H12 170476 334125 045204 254 525 5206  B7.1605
30| 28 104138 MM2475  1T0.73B 245 045204 256,375 0776 BE44ES
31 | 30 106240 2MT.B13 170.625 324125 04,5204 242563 47T18B8  BR.2991 ar.2 0.2 8.2
Erd k1 1024.8 218.063 178425 434625 94,5204 261,125 5055 659384 a7.2 0.2 51.2
33 2 107074 215.063 165.337 385125 04,5204 248563 501.75  BG6.BT21 7.2 0.2 51.2
34 33 1054.65 216.075 176.025 4125 94,5204 249 563 523  BT.69G8 B7.2 0.2 51.2
35 34 1072.05 H4.725 166238 41.075 04,5204 263563 5145  BB6.1258 &7.2 0.2 51.2
1 35 1058.71 224 B25 177 675 353125 04 5204 252 875 RI2.26  BT.3TE2 B7.2 0.2 1.2
37 38 101813 223275 1R15GAT 124 DAG2MM  ZRO2PE 232426 GTTGR3I 722235
iR ar 1058 Th AN 9R2 150 18R R RR 0 RN AR 144 731 RRA RRR R/ T R
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Issues faced with engineering data

» Unaligned data

e

VA

— g Batches

L

Variables
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Issues faced with engineering data

Tools that we require:

» extract relevant information from data

» deal with missing data

» 3-D, 4-D and higher data sets

» combine data from different sources (same object)
» handle collinearity (low signal to noise ratio)

» handle error in recorded data

| atent variable methods are a suitable tool that meet these
requirements.
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Examples of large data sets

e Typical fab processes

— Data size: order of terabytes in a few days

Databases in a typical fab process
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package
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What is a latent variable?

* Fortunately (& unfortunately at the same time), all
variables are not independent.

 Redundant images of few “latent” variables
Your health

» No single measurement of "health”

blood pressure

cholesterol

weight

waist, hip (waist:hip ratio)
blood sugar

temperature, etc

¥y ¥ ¥y ¥ v

» Combine these in some way? Trained doctor does this
mentally.

Health is a latent (hidden) variable
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What is a latent variable?

Clinical History/Q&A

Gene expression

P-rotem p

-@-r—&-

Metabolic oflle

- .JLD

| am a doctor! / ”"““‘“-mm,, T
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What is a latent variable?

Temperature in this room

300

295

290
300

295

290
300

295

290
300

295

290

Room temperature measured at the 4 corners

MMWNJ\N‘W%J\\; A
LNy
Front left

~ A
TN T T e

Back left

"\N.lI ~1
M\V\l\'\v\xwxﬁ_, MW\ M\__,h,,.riwj

Back right

oAt et 21O

» What drives the movement up and down?
» Correlation of thermometers with the driving force.
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What is a latent variable?

Temperature in this room: geometrically

: S
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» Each measurement is one point

» Rotation
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What is a latent variable?

Thickness of wood boards

® 6 5@ 4 @

@3 20 1@

-
Feed Tail

* x; = average tail thickness: average of thickness 1 and 4
* o = average feed thickness: average of thickness 3 and 6

» xg = average taper: average of thickness 1, 2 and 3 subtracted from average thickness 4, 5, and 6

Xraw

\— "
100x 3
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Feed thickness

1680 1700

1600

What is a latent variable?

Tail thickness

[ ]
. .
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* Y .. -. .
L BN ] ." L] .
. “ .'l'.r' ‘.“: .I-
. : » .h.' 'i
]
A ‘e "". o
L LX)
) -f. s
[ ]
L
1620 1660 1700

— Tad thicknags

1. The fact that the entire board is thicker or thinner is captured by the feed and tail thickness measure-
ments. These measurements are correlated with whatever physical phenomenon causes that average
thickness to increase or decrease (e.g. spacing of the saw blades).

2. The third measurement, taper of the board, is capturing a different phenomenon in the system:

possibly caused by how much the blades are skewed out of alignment.
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Latent variable methods

(Multivariate statistical methods = latent variable methods)

e Principal component analysis (PCA)
— a.k.a Karhunen-Loeve transform or Hotelling transform

e Factor analysis

e Fisher’s discriminant analysis

* Independent component analysis
* Principal component regression

e Partial least squares (or projection to latent
structures)
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