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Design of Experiments

What we will cover

Optimal designs

Response surface methods
(process optimization)

Design and Analysis - N\
- of Experiments éeplicates
Course project  ——

Factorial design

Effects

Generators

Resolution

-4 Fractional factorials

Defining relation

Analysis of design

mbining fractions

\

Interpretation

Reading:
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Fathers of Modern Experimental Design

Sir Ronald A. Fisher (1890-1962).

 Statistician, evolutionary biologist, eugenicist
and geneticist.

* Credited with ANOVA and DOE

» The Design of Experiments (1935)

George E.P. Box, Professor Emeritus (1919~)

» Founder of Stat Department @ Univ. of
Wisconsin, Madison

« DOE and RSM

« Famous quote: "Essentially, all models are
wrong, but some are useful®.




Usage examples

+ Colleague: 8 process variables seem to affect melt index. How to narrow
them down? Which one has most effect on y?

+ Engineer: 3 manipulated variables of interest; how to run the
experiments?
+ Manager: how do we analyze experimental data to optimize our

process?

+ Colleague: small changes in the flowrate lead to unsafe operation.
Where can we operate to get similar results, but more safely?




Why design?

1. Ensure adequate variability in all key variables.
 Variable x may have very important effect on process performance.
 But if variation in it is small relative to noise level, then may
* Accept H,: effectof x =0
 Obtain confidence interval on effect of x to include zero.

 This does not necessarily mean that effect of x is not important — only that it

isn’t large enough in this particular data set to detect significance.

 Design of experiments provides a form of guarantee that accepting H

implies that the effect is not important.




Why design?

2. Ensure identifiability of all important effects & interactions

DOE helps ensure that all important main effects and interaction can be

identified — minimizes confounding

Our bad experimental habits arise from the nature of university

laboratories:

« These undergrad labs aimed at demonstrating theoretical principles,
not a building models, exploring for unknown effects, or optimizing

processes.

« Ex. Demonstrate the effect of temp. on reaction equilibrium — changing

temp. holding all other variables constant!

COST approach is not good when searching for effects, building models, or

optimizing processes.



[FYI]Changing One variable at a Single Time (COST)

+ We can hardly find values of conc. & temp. for max. yield using COST

approach
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+ DOE: efficient ways of changing many variables at once



Why design?

3. Maximize the information obtained in fewest number of experiments
- Examples of industrial screening experiment

« Problem: in a new plant the cycle time in the filtration section was

unacceptably long.
 Need to de-bottleneck
« Many factors suggested that might be responsible.
« How to screen out important ones in fewest runs possible?

4. Distinguish between causality and correlation

- Data from Australia over many years on A
» # of Baptist minister Liquor
: C d
vs. amount of liquor consumed onstme
» Strong correlation? Causal effect? oo ©

N
7

# of Baptist ministers



Why design? (in plain words)

« The objective of experimental design is to relate independent
variables to dependent variables as efficiently as possible (i.e.,

fewest number of experiments).

« Two general types of experimental design:

* Screening—Define the important variables or “Main effects”. (through

Factorial design, fractional factorial design, ...)

«  Empirical modeling—Develop approximate models of true systems for

further use. (Response surface method, ...)



Analysis of effects of a single variable at two levels

+ Simplest case:

+ catalyst A vs catalyst B

+ low RPM vs high RPM

+ Etc
¥ Measure n, value from setup A
¥+ Measure ng values from setup B

+ Hold all other variables constant (control disturbances)

= Two ways to answer this:
+ Comparing means of X and Y

+ Least squares



Using confidence interval of X -Y

+ Test for difference
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Using least squares

¥ The same result can be achieved using least squares: y; = a, + a,d,

+ d; = o for A; d; = 1 for B; y; : the response variable

EXAMPLE : Etch rate of solutions 1 & 2

Solution 1+ Solution 2«
9.9 10.2+
0.4+ 10.6+
0.3+ 10.7«
0.6+ 10.4¢
10.2+ 10.5¢
10.6+ 10.0+
10.3¢ 10.2+
10.0+ 10.7+
10.3+ 10.4+
10.1+ 10.3+

Engineers @ a semiconductor manufacturing plant want to know which
solution has higher etching rate.



Using least squares (cont.)

+ C.Iapproach

1 1

_  _ 1 1 - -
(%1 —%2) — taj2.0,+n,-2(5p) n—1+g <P —Uy (X —Xa)+tai2n +n, 2 (5p) ﬂ—1+n—2

1

1 1 1
997104 -2101(340., | —+— = — (997 -10.4)+ 2.101({ 3400, |— + —
( ) ( )mmn.nz( ) (340)y [+

—0.749 < u, —pu, <-0.111 Zero included?

+ LS approach

+ Find a LS solution in the model: y = a, + a,d

* dl =0 fOI‘ 1; dl =1 fOI‘ 2; yl . etChlIlg I‘ate Confidence
7 intervals of a, & a,
value S.E t statistic P-value @ LB 95% U.B 9%%
al 9497 0107523 9272469 141E-25 9744103 101959
al 043 015206 2827832 0011151 0110534 0.749466 Zero included?

+ Same result and more (significance test + prediction model)



Several concepts in DOE

+ Randomization and blocking
+ Comparative experiment: effect of two methods on strength of rubber strip

* Run experiments Run order

and do significance test (C.I of X, —Xj;) or least squares(y; = a, + a,d))

..... Any problem with this?
« What if strip of rubber had variation along its length?
Then, X, - X, might just be reflecting this difference.

* One solution - randomize allocation of rubber portion to methods
(A&B)

Al BBl a s Al A8 B

...... No problem with this?



Concepts In DOE - Randomization and blocking

« Suppose we expect variation in rubber to be progressive along length of
the strip! Then, two different adjacent portion will be much more

similar than two distant ones.

- block into pairs of adjacent pieces. Assign methods (A&B)

randomly within block .

Block 1 Block 2 Block 3 Block n

(Randomized block design)

And only compare within block

block A B D=X,-X;
1 X Xp, | d, =Xy, - Xg, Blocking can remove effect of possible
2 X0 Xg, d, uncontrolled variations along the length of strip

(remember advantage of paring)

n Xun X d,




Designs for experimental studies

% Objectives
* Screening studies
: discovering which of a large number of variations affect response
+  Empirical model building studies
: true model unknown. Use approximate models, y = f(x,, X,, ..., X;.)

+ 2kfactorial designs

Range of interest
(ex. Operating range)
\

*  Best 2 experiments? ' \

*  Want to estimate of linear effect of x on y.

N
7

Vv




22 factorial design

We will use this system for our example.

Substrate concentration [g/L]
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22 factorial design (Cont.)

+ This is the true surface plot

Conversion

Subtrate
concentration Nt
S [g/L]

Temperature, T [K]



22 factorial design (Cont.)

+ Two independent variables:

range

Temperature (T, K) 338 ~ 354

Concentration (S, g/L) 1.25 ~ 1.75

+ Study effect of T & S on conversion y (%).

Two variables

. . 2/ L 5 All possible combination
+ Design: 2° factorial in 2° =4 runs -~ of two levels of two variables

Two levels

+ & run the experiments:




22 factorial design (Cont.)

+ Main effects of T & S

53-60=-7
64 - 69 = -5
Average -6% per 0.5g/L

-3% per 0.25g/L

53-64 =-11
60-69=- 9
Average -10% per 16K
- 5% per 8K

+ Almost no difference between the values within each main effect (see

interaction plot)

BTW, where would you run your next experiment(s) to improve yield?



22 factorial design (Cont.)

+ Interaction between T & S
+ Do variables T & S act independent on y?
+ Or, is effect of T (or S) same at both levels of S (or T)?
+ If effect is different - T x S interaction.

Visualize this with an interaction plot.

Effect on conversion

69 — Lines are roughly parallel.
64

64 § 60 60

69

— Temperature + = Substrate concentration =+




22 factorial design (Cont.)

<+ Consider another case
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22 factorial design (Cont.)

+ Main effects of T & S

Experiment T [K] S [g/L] y [%]
1 — (390K) | —(0.5g/L) 77
2 + (400K) | —(0.5¢g/L) 79
3 —(390K) | +(1.25¢g/L) 81
4 + (400K) | +(1.25¢/L) 89

» Main effect of T: 5% per 10K

» ATs, = 8% per 10K
» ATs_ = 2% per 10K

» Main effect of S: 7% per 0.75g/L

» ASty = 10% per 0.75g/L
» ASt_ = 4% per 0.75g/L

+ There was an important phenomenon that we did not capture with the
main effects alone.



22 factorial design (Cont.)

+ Interaction between T & S

Effect on conversion
. - 4 o
77 77

e Temperature -+ == Substrate concentration =

» Lines not parallel
» Implies there is an interaction

» In this case, interaction between T and S
» called the T x S interaction
» it is a 2-factor interaction




Analysis by least squares (Cont.)

+ Back to the 15t example (little interaction)

+ Design matrix (condition) & experimental results

T s | v

338 1.25 69 % Center: usually current condition
354 1.25 60
338 1.75 64
354 1.75 53

+ Transform x variable (T & S) to scaled variables ¢ why?: remove scale effect

_ variable —centerpoint

Range/2
X, = T-346 Range of x;’s
8 -1 to +1
C-15 -1 to +1




Analysis by least squares (Cont.)

+ Design matrix becomes

“Cube plot”
+1 .
xl x2
-1 -1
+1 -1 Xo
-1 +1
+1 +1 . o *1
_1 xl

+ Fitmodel: Y=9,+aX +aX, + 31@ Interaction term

+ four parameters & four data points

- Zero D.O.F (no C.I possible)




Analysis by least squares (Cont.)

- = Y =28, ta X +a,X;, +a,X%X,
-1 -1 69
+1 -1 60 . )
M » 61 In matrix-vector notation,
+1 +1 53 Y= Xa
1 X, X, XX,
(60 EN T 1
{2
y= a=| ™ X =
54 a,
| 68 8y, |

+ Regression coefficients (usually from S/W)
a=(X"X) X'y
Columns of X : orthogonal (i.e., X;-X; =x{X; =0 )
> D XX =D XX =D X (4%,) =D X% D % (%,%) =D X, (%,%,) =0
. 2012081 IFE@¥LHL.sf:TO 26



Analysis by least squares (Cont.)

o O O b~
o O ~ O
o ~ O O

~ O O O

1> %5 0 0 0 i > %oy
I T T0 % S R ) 2%
10 0 1>% 0 > %y
0 0 0 Y (%) | 2 00%)Y.

+ le., Q= Z—X)'(zy' Each q; can be calculated
2% independently.
+Y,+ Y, +
e_g.’ ao — yl y2 4y3 y4

a; = effect of changing variable x; from o to +1.



Analysis by least squares (Cont.)

+ Confidence interval of a;
+ Four data points & four parameters: D.O.F is zero

+ Can’t calculate C.I unless
+ o 1s known

+ S can be calculated from replicates (or historical database)

2 a; are uncorrelated due to

-1 (o2
var(@) =( X" X) % = var(a) =
() =(X"X) B)=S57 rthogonality of design

+ o 1s known

95% C.I &, + 27, /0'2 /> %

+ S is known

95% C.I & itvlo_ozs\/sj,x /> %% (when o unknown)



Analysis by least squares (Cont.)

» Least squares model for DOE in 2 factors

y

Intercept

(+1, -1)

» Interaction term is small: blue plane is flat
» Interaction term is large: plane has curvature



Analysis by least squares (Cont.)

+ Calculation by hand: 15t example (little interaction)

60 +1 -1 -1 +1 246 4 0 0 O
-1 - - 0 400
y = 12 X = +1 +1 -1 -1 XTy = 20 XTX —
54 +1 -1 +1 -1 -12 0040
| 68 | +1 +1 +1 +1 | -2 | 0 0 0 4]

a=(X"X) X'y= _

y=ay ta X, +a,X, +a,%xX,
=61.5—-5%, —3X, —0.5%,X,




Analysis by least squares (Cont.)

+ X'X: zeros on off-diagonals
+ orthogonal matrix
+ each column is varied independently of the others
+ Interpret a, = -5?
+ X, (T) is changed in normalized temperature by 1 unit
+ Changing x, from 0 to 1 implies actual changes in T from 346K to 354K

+ -5% decrease in conversion for every 8K increase in temperature

+ Interpret a, (S) = -37?




Analysis by least squares (Cont.)

+ Calculation by hand: 15t example (strong interaction)

77 +1 -1 -1 +1
79 +1 +1 -1 -1
y = X =
81 +1 -1 +1 -1
_89_ +1 +1 +1 +1

+ Verify this yourself |y =81.5+2.5X, +3.5X, +1.5X X,

+ Large interaction is verified.

Any stat. S/W can generate this.

Conversion

Subtrate
concentration
S [g/L]

0% Temperature, T [K]



23 factorial design

-~ 3variables

23

5 levels Qualitative variable

+ Three variables: T, C, and catalyst type (A and B)

v Denote: x, = -1 for catalyst A
= +1 for catalyst B

+ 23 factorial (= 8 runs): all combination of the 2 levels of the 3 variables.

Xo X, X, Xg XX, X, Xg X, X, XX, Xy 3 i
Design +1 -1 -1 -1 +1 +1 +1 -1 Cube plot
Matrix, X S I I I B -1 1| 4+

+1 -1 +1 -1 -1 +1 1 +1

+1 +1 +1 -1 +1 -1 -1 -1

+1 -1 -1 +1 +1 -1 -1 +1

+1 +1 -1 +1 -1 +1 1 1

+1 -1 +1 +1 -1 -1 +1 -1

+1 +1 +1 +1 +1 +1 +1 +1




23 factorial design (cont.)

+ Analysis by least squares
+ Fit model:
y - a‘0 + a:I.Xl + a2X2 + a3X3 + a:I.2X1X2 + a13)(1)(3 + a'23)(2)(3 + a123X1X2X3

In matrix-vector notation,
y = Xa
+ Again, by least squares

a= (XTX)_1 X'y=a =

Clofa; var(a)= (XTX)_1 o’ = var(a) = ZO:- 2

95% C.I &, 27, /02 /> %

95% C.I & J_rtv,o_ozfs\/si,X /> % (when o unknown)




23 factorial design example

Plastics molding factory; waste treatment.
» Factor 1. C: chemical compound added (A or B)
» Factor 2: T: treatment temperature (72 F or 100F)
» Factor 3: S: stirring speed (200 rpm or 400 rpm)
» y = amount of pollutant discharged [lb]

Experiment | Order C T [°F] S [rpm] y [1b]
1 5 A 72 200 5

2 6 B 72 200 30

3 1 A 100 200 6

4 4 B 100 200 33

5 2 A 72 400 4

6 7 B 72 400 3

7 3 A 100 400 5

8 8 B 100 400 4




23 factorial design example

1. Calculate main effects, C, T and S
2. Calculate the 3 two-factor interactions:
1. CT,CSandTS
3. and the single 3 factor interaction
1.  CTS
4. Main effects and interactions using least squares (by-hand)

5. S/W verification:

y = 11.25 + 6.25X: + 0.75X; — 7.25Xg + 0.25XX1 — 6.75XXg — 0.25XXg
— 0.25XX1Xg




ok factorial design

+ Desirable features of factorial designs
+ Othogonal - easy calculations
- uncorrelated estimates a;
+ Good variation in all variables
+ Efficient use of all data points
+ The only way to discover interactions between variables

+ Allows experiments to be performed in blocks

+ Allows designs of increasing order to be build up sequentially




Significance of effects

+ For a 2k factorial
+ 2K parameters in the least squares model
+ 2K data points collected
+ implies S, =0

+ Zero degrees of freedom

+ How to assess if an effect is significant? Consider 2 approaches.




Significance of effects (cont.)

+ Significant? : Pareto-plot (or normal probability plot)
+ 24factorial: 15 parameters + intercept

+ Bar plot: any stat. S/W can do this.

A
AC |
AD |

D |
C
ABD
B
BCD
BC
ABC
ACD

ABCD
CD
BD
AB

i

Effect

o—uuuuuuuu

N

4 6 8 10
Magnitude of effect



Significance of effects (cont.)

+ Caution: if an interaction is significant (e.g. BC), then no need to test the

main effects, B and C
+ these main effects are "automatically” significant
+ even if they have small numeric coefficients

+ since B and C act together to affect response y

+ so never exclude main effects whose interactions are significant




Significant effect?

+ We require degrees of freedom to construct confidence intervals. Two
ways to get Dok

1. Replicate experiments
+ Easy (to calculate), but not doable when # of factor 4 ~
2. Drop out a factor from a full factorial
+ Will five factor interaction x,x,x,x,x; be significant?
+ Or, drop smallest effects first.
+ In either case, delete non-significant effects (parameters) and re-fit
+ Now least squares model has new residuals and DOF.
+ Use all previous tools from least squares to check model

+ Use confidence interval of g, to verify the effects are significant



Significant effect? (cont.)

+ Replicate runs
+ replicated 23 factorial: 8 + 8 runs
Yi, & y;, at conditioni(i=1,2,...,8)
Yi =03(Yis +¥i2) & =Vio Vi
S ﬁ((yi,l =Y )2 +(yi,2 =Y )2) =3d;
Pool variances for all 2 levels
S32//x = % ZZ: di2
Errors alre t-distributed with 2k degrees of freedom

n95% C A Et, g [S0y /D%

determine if a main effect or interaction is significant

v
v
v
v
v
v
v
v



Significant effect? (cont.)

+ No replicates
+ 24factorial: 15 parameters + intercept > DOF (#data - #parameters) = 0

+ AB seems insignificant = set a,; = 0 2 now, DOF =1

>

AC
AD |

ABD

l

BCD
BC
ABC
ACD
ABCD
CD
BD
AB

Effect

f-=oo00p

e

4 6 8 10
Magnitude of effect



Exercise

+ When you have replicates.

+ You're a process engineer @ a semiconductor plant who wants to determine
factors affecting thickness of epitaxial layer on silicon wafer. The main
factors (or input variables) you think are (deposition) time and (arsenic)

flowrate. Assume only linear relationship.
+ Solution
1. 22factorial design with 4 replicates @ corners

stat>DOE>Factorial>create Factorial Design
SEMNTAR -Umied g g |

Fie Edt Marip Calc [[ERg Graph Edtor ‘window Help
slal sl = el e Sl o)) Slel| gelEleEET
Fearession 4
s :
- Factorial Create Factonal Deszsign. ..
LControl Charts 4 Beszpongze Surface  # WefineEustomn Factanal ez,
27N Buality Tools 3 b imbuire: 3 ) )
. Rieliability/Survival ¥ Taguchi | EnabzciractmnlDesg.
Welcome to Minits U = Eactanial|Flats, .
Fultivariate » W odife Desian -
Time Series L EinI:_I,I Desiggr;“ Eantour/Surace (Wireframe] Flats.
Tables » = (e afd Eartanr Flat
MNonparametrics 4 | Besponse [IEtmiEer..




Exercise (cont.)

Create Factorial Design

1)

(2)

Type of Design

I & Z-level ftactorial (detault generaturs)él

 2-level factorial (specify generators)
" Plackett-Burman design
" General full factorial design

|ﬂumber of factors: | 2

=~

Help

(2 to 16 factars)
(2 to 16 factars)
(210 47 factars)
(2 to 16 factars)

Display Available Designs...

Facturs

Designs... |

(3)&(4)

Options... Flesu

|

|

|
[8]:4 Cancel\

Create Factorial Design - Designs

Designs

Full

fagtorial

Mumber of replicates:

Murmber of blocks:

Help |

Murmber of center points:

Runs

o
=
o

Resolution

2xx(k-p)

{per block)

{for corner points only)

[8]:4 Cancel |

Create Factorial Design — Factors

Factor Name ‘ Type | Low ‘ High |
A Time Text j Short Long
B Flowrate | Humeric j 55 54

Help | ’TI

Cancel |




Exercise (cont.)

3. Run experiments according to design matrix

+ C1 c2 C3 c4 Ch-T CB
5tdOrderRunOrder|CenterPt Blocks  Time Flowrate
1 11 1 1 1 Short Rg
2 15 2 1 1 Short h9
3 3 3 1 1 Short B9
4 2 4 1 1 Long 58]
5 9 5 1 1 Short b5
6 g B 1 1 Long 9
7 7 7 1 1 Short S
8 10 5 1 1 Long b5
g 1 9 1 1 Short RS
10 4 10 1 1 Long h9
11 12 11 1 1 Long B9
12 3] 12 1 1 Short B5
13 16 13 1 1 Long hY
14 8 14 1 1 Long 519
15 13 15 1 1 Short RS
16 14 16 1 1 Long b5

-_ \‘ Why?
. 201208 IFE@¥LHLe:O 0 46



Exercise (cont.)

4. Analysis of experimental results
Using all analysis tools from least squares & main/interaction plots

DOE>Factorial>Analyze Factorial Design
SEMINITAR -Unmiled g g |

Fle Edt Manip Calc [EEY Graph Editor window Help
~ . Basic Statistics » = ) =] % i =
el &f sl Bl w) el wlEll]) olzl delElel
- DOE 3 Factonial 4 LCreate Factonal Design...
Cantrol Charts 3 Fesponze Surface ¥ Define Custom Factorial Design...
Factors: . .
Guality Tools 3 binture b : ——
Runs: R eliabilito/S vl , Tacuchi N Analyze Factorial Design...
EBlocks: hone - _‘I'I =70 Factarial Plots...
builtivariate » Modify Desi
. . odify Dezign...
L1l terms are fre Time Series 4 Eis I: Design EanrtounSurace [Wirehame| Blats.
Tables » it g e Cantawn Bt
MNonparametrics » Eespanse HptmiEer.. _I
ED, 3
Power and Sample Size ® ‘LI




Exercise (cont.)

4. Analysis of experimental results (cont.)

Analyze Factorial Design

Analyze Factorial Design - Graphs

o7 thickness

Select

Besponses:

thickness

Terms

Qovariates...l Brediction...

Graphs... |

Results...

Storage...

YWeights... |

Analyze Factorial Design — Terms

Include terms in the model up through arder: Iﬂ ']

Cance

Selected Terms:

available Terms:

c1 Stddrder Eftects Plats
oz FunOrder i
oa Centarpt Iv #armal ¥ Pareto Alpha: [0.05
G Elocks
o5} Flowrate f o
o7 thickneas Residuals for Plots:
@« Regular " Standardized  Deleted
Residual Plots
" Individual plots
I” Histagram
I~ Mormal plot
I© Besiduals versus fits
I Residuals warsus order
& Four in one
I Residuals versus variahles:
Select
Help QK Cancel |

AiTime
B:Flowrate

; ime
B:Flowrate
AB

>

<4

Cross

BEEELL

Default

[T Include blocks inthe model

I~ Include cemter goints in the model

%

Help | Cancel




Exercise (cont.)

(a) ANOVA table (- we have replicates)

Estimated Effects and Coefficients for thickness (coded units)

Term Effect Coef SE Coef T F
Constant 14.3334 0.03606 399.05 0,000
Time 0.8369 0.4184 0.03606 11.60 0.000
Flowrate -0.0681 -0.0341 0.03606 -0.94 0,363

ﬂimE*FlowratE 0.0324 0.0162 0.03606 0,45 0661
S =0.144228 R-Sg = 91.88% R-Soladj) = B9.85%

dnalvsis of Yariance for thickness (coded units)

Source OF Seq S5 Adj S5 Adj MS F P
Main Effects Z 2.82000 Z2.82000 1.41000 BY.FE 0.000
lay Interactions 0.00419 0.00419 0.00419 0,20 0,661

1
Fesidual Error 12 0.24962 0.24962 0.02080
Fure Error 12 024962 0.243962 0. 02080
Total 16 3.07382

Unusual Observations for thickness

Obs  Std0rder thickness Fit SE Fit PResidual St Resid
11 12 14. 4150 14,7890 0.0721  -0.3740 -2, 99/

R denotes an observation with a large standardized residual .

Estimated Coefficients for thickness using data in uncoded units

Term Coef
Constant 15,3597
Time -0, 04291
Flowrate -0.0170313

Time+Flowrate  0,0080937



Exercise (cont.)

(b) Residual plots

BResidual Plots for thickness

Percent

Frequency

Normal Probability Plot of the Residuals

99

90

B0

4.5

2.0

1.5

oo

Residual Plots for thickness

gy ey mp—— ———

Residual

Histogram of the Residuals

-0.4

-0.2

-0.2 -0.1
Residual

0.0

0.1

Residual

Residual

0.0

0,4

Residuals Yersus the Fitted Yalues

-|:||2 4

140 142 14.4 145 148
Fitted Yalue

Residuals Yersus the Order of the Data

0.0

-0,2

0,4

/\,/\ﬂ/\r
=7 ~ /

12 34056 78 91011 1z 13 14 15 16
Observation Order




Exercise (cont.)

(c) Plots for effects

You can also determine which factors have significant effects.

w
w
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Effects Pareto for thickness

Normal Probability Plot of the Standardized Effects
{response iz thickness, Alpha = .05

Effect Type
& Mot Significant
W Significant

Factar  Marne
Tirme
Flowrate

A
B

juanad

Standardized Effect

Pareto Chart of the Standardized Effects
response is thickness, Alpha = .05

Factor  Mame
Tirne
Flowrate

Standardized Effect




Exercise (cont.)

Alternatively, main/interaction plot

[Ol0IAl 28] Interaction Plot (data means) for thickness

Main Effects Plot {data means) for thickness Interaction Plot {data means) for thickness

Time Flonwrate

¥ean of thickness

Flowrate




Exercise (cont.)

- Depending on your goal, you can refine a prediction model by selecting

significant factors (variables) only.
- less # of coefficients
- more degree of freedom
— more accurate estimate of C.I (S, can decrease)
This is very useful even when you have many factors and no replicates.

Principle of sparsity of effects: the system (process) is usually dominated by

the main effects and low-order interactions. That is, the three factor and

higher-order interactions are usually negligible.




Design for 27 order models

+ If 15t order + interaction model exhibits “Lack of fit”

> Include X, XZ,--- terms s N
But we need more than 2 level designs. ) ’
- Central composite design or 3 level factorials . | )
¢ Central composite design (k=2) x>
(1) Start with 2k design with center points O -
(2) Add vertices of star (for k=2, o = /2 ) 1 1
(3) Run experiments & analysis +11 +11 o runs
) » .| Forcentral

composite

“Cube plot” . 0 0 design (k = 2)
d S EmE

‘ ————— J - -1.41 +a 0




Design for 224 order models (cont.)

+ Values of o Cube plot for 3 variables (factors)
®
k design o
2 22 2 ( o_’ /o ‘ 15 runs
For central
3 27 V3 ¢ /{ o :1 7 composite
4 2 J4 | ./: j ' design (k=3)

+ 3 level factorial

3? 2 variables at all combinations of 3 levels
3’ 27 runs for 3 variables L |

% Full quadratic model (assume 123 interaction is negligible.)

Y =8y + 8 X, +8,X, + 85X + 81, X, X, + 83X Xg + g Xp Xy 8y X, 8y, X5 +8g3Xs

Allows for approximation of many response.




Design for 224 order models (cont.)

% A t-statistic for curvature

Average y of corner points \ / Average y of center points
Ye =

curvature
1 +
Pure error calculated n

from center points

# of center points
# of corner points

Minitab uses ANOVA for testing curvature when center point replicates

exist.




Response Surface Methods (RSM)

+ Imagine you MUST climb a mountain,

0 258 B16 775 1033 1281 1550

+ What you would do & how?
+ If you have GPSs and altimeters.

+ Same situation: you want to increase a reactor’s yield but don’t know
the process at all.



Response Surface Methods (RSM)

+ RSM 70—
.. .. ﬂ 65
+ Objective: optimize a process 2 26
(or system) using mathematical g 22r Current
S B oper.at.ing \
& statistical techniques. 8 e conditions Rision
Ij:);) 1.4 L of_the
+ But, the process is usually unknown. B optimum
1.0 I
(i.e., relationships between x & y 10 1200 140 160 180
Temperature, “C

variables are unknown.)

(1) The First step of RSM is to_find a (approximate) model of the process
using least squares & DOE.

(2) Next step is to improve process operation by moving to a better

operating point using the model.

(3) Repeat this until optimum is reached.



FYI (For Your Information)

v

y=28,

Response surface?

TaX +aX, +apX X

. 41.00 -
Conversion

© 40.00

156.0 > 3800 +1
o 154.0 SN 36.00
152.0 34.00 g
x5 (temperature) 5010 200 (:)%2.00 x, (time)
- =

Three-dimensional surface plot

Y =8y +aX + X, +8,X X, + 8 X + 8%,

Surface plot

B - “ N
70.12 < W et S
&S S A\
15085500, 00 0999 .9.6% 9 eV
6723 SIS
sty S S SR
/;l ,'I' lo.’.'0’0 ’.’:‘0“‘ o
. 64.34 1
Conversion '
61.45
1750%
1 602 . 62.00
166.4 >~ 59.20 41
= ~ 56.40
0 s~ 53:60 g
x5 (temperature) 250 '4-18.00 % (time)
- e




FYI (For Your Information)

+ Compare two cases

11720

0 1650

xo (temperature)

-1 158.0

+ COST costs too much to find optimum when interaction exists.

169.7

167.3

162.7

160.3

Theoretical yield profiles

N
<}

=
w
L

=
o
I

Final

o
wn

48.00
-1

55.00
0
X (tImEJ

Contour plot

Substrate concentration [g/L]

- N
‘JO
\
0\

(2]
>
2 % 0N B
Qi\\\
"\
\ T T T
370 38

340 350 360
Temperature [K]




Graphical interpretatiqn-qfﬁSM (1)

Unknown true process D — "';._Optimum operating condition

y =ﬂx1’ X2)

000
o
OO

y

’0

’,‘%’t RSMchmbmg a hill”

Current operating condition




Graphical interpretati_qn--(;)“fi'{':S.M (2)

Unknown true process
y =flx,, x,)

Optimum operating condition

Approximate model
near point 2

Approximate model
near point 1

\/
needed

&
<%
SRS
2S250EEIERIRIIAI
RSREEIIIIIRIIAIHICIEHIRHR>
& RSRSIRIIIRISIIIRICRS
(REAEIEIIIIRIRHICITIRIIR IR
£S5 2SS0 SRR AR
(SREEEIR5SEIEITIRIRIIAIICIHA XD
£35S S SEERSRERELEISRITIRICIICICHIK .
E0SESERERERIIRICIHIIICIHRIHIS
RIS EELEIEIERIIIIICIH IR .
RS EISRSITRIEELHIIHRICRITIIICHD
(EREEIEIEIRIEIIEIEIIIERIIIIH I '
RS EREIRICRICHIRIIICH I M
IS SI5RRIRIIIRIHIRIH I IR )
SRR I REIEEIRRICIISTICHH IR
IS IR IOIIITICI IR ICAIR :
SIS SREREEIIIFIIIIITIHR I IR
S EIE0SRSSRIEIRIIIITIICICRRIIIH IR .
29SS SRICITICH I K ICIIR
OISR SOSIIIICHRHX NI I III i
P00 SRR ICIIH X I ICI IR
RS RSSRIRIRRIIIEEIIER IR ICHAIIHD )
RIEEEIRRIRSEIICICIICRND 25350500535 :
ZERSRSEIIRIRHIRIHR I A 23350
RIEITIIILIIIRSIISIIAR RS SRS
ERSEIIRIRIITRICHRR RS o
RS2SR
LRSRSEEGIRIITHRSS . -
SIS : : : .
QSERIIIIIRIRIT : ) : ; .
ZELRRS .- : :
9299952, 5:' - - : B v :

“«_central composite design

A linear model form will do. s
“...or.3-level design

(full) factorial design

Current operating condition




Graphical interpretation of RSM(B)

Optimum
Unknown true process Co ~—— operating
y = flx, x,) - condition
The fastest way to climb a hill o\
Methods of steepest ascent
167.3 20
0 165.0 .
o=
162.7
-0
160.3
_ED‘_\_
—1 158.0
48,00 5033 52467 BLH.OD  57.33
-1 0
- - . . A0
Direction of steepest ascent
|y Y
oX, 0%,

~ (a, a,) when interaction is
smaller than main effects

Current operating condition




RSM (cont.)

+ General procedure

1. Perform (fractional) factorial design around current operating conditions &

fit a linear model form

y = a0 + alxl + a2X2 + a3X3 + aZLZXlXZ + a13)(1)(3 + a23X2X3 + a123)(1)(2)(3
2. Calculate direction of S.A. & perform experiments along this direction until

response doesn’t improve. (step size to be determined carefully)

170 : :

(]_) Original region
of experimentation

160 — \\V/

= Point A: 40 minutes, 157°F, y = 40.5
B Path of Point B: 45 minutes, 159°F, y =51.3
steepest ascent (2) Point C: 50 minutes, 161°F, ¥ = 59.6

| Point D: 55 minutes, 163°F, y = 67.1|

Point E: 60 minutes, 165°F, y = 63.6
— Point F: 65 minutes, 167°F, y = 60.7

Temperature

QOriginal fitted
contours

30 40 50 60 70
Time




RSM (cont.)

5. Lay down a new factorial design.

4. Repeat steps 1 ~ 3 until linear model is insufficient.
* Curvature shows up.
- 2-factor interaction dominate main effects.

5. Estimate a quadratic model if curvature and/or interaction is large relative

to main effects.
* Add star points - central composite design
*  Or three-level design
Y = a, +aX +a,X, +a,X, +a,X X, + g XXy + X, Xy + A, X + 8, X2 + Ay XS
. Plot response contour and move towards to best conditions

(most statistical software will do this)



RSM Exercise

Yield y = f(T, S)

Current operating conditions

« T=325K
e S=0.75¢/L
e Profit = $407

Step 1

Experiment T | S Profit
1 - | = 193
2 + | - 310
3 - | + 468
4 + | + 571

y = 385.6 + bSzr + 134xs — 3.7beras

Step 2

Derection of S.A

= (% %) = (55 134)
experiment | 5 6 7
profit $669 | $688 | $463

Substrate concentration [g/L]

Contours of profit per kilogram (%)

N
@)
|

=
u
|

-
o
|

300

2400

200

315

325 330 335 340
Temperature [K]



Contours of profit per kilogram (%)

RSM Exercise 560 T

Vi
2.5 B
Step 3
Experiment T s Profit
8 — - 694
9 + - 725
10 — + 620
11 + + 642
6 0(335K) | 0(1.97 g/L) 688 2.0 | u

i = 670 + 1327 — 3025 — 2 drras

Derection of S.A
= _EEL J@!_ ~ (13 _39)
OX  OXg s

Profit (12) = 716 < profit (9)

—> Strong interaction

=
o
I

Substrate concentration [g/L]
wn

Step 5
Star points os | I
y1a = 720, ys = 699, y;5 = 610, and yyg = 663. [
e 300 ..
y = 688 + 12927 — 39.1xs — 2.4arxs — 4207 — 12208 o " 1o v 500 T
315 320 325 330 335 340 345 35

Temperature [K]



Mixture design

+ Mixture design
+ Ordinary factorial design with a constraint
+ O SXA,XB,XCS 1, xA+xB+xC= 1

+ Of course, RSM can be used to determine best mixture.

Mixture contour plot

100% orange

ol /T

()] T

c O T

g 0% watermellon
(\
\\0
(2)
&
X%
0% orange $®

0% Pineapple i,

pineapple pineapple



Mixture design (cont.)

+ Example: Product design (development)

The selection of Bjend

’ Process
raw materials

! - Final product
ratios conditions

properties

40%

Tem P,

feeds Density
30%

Desired properties




Mixture design (cont.)

Example: Functional Polymer Development
Mitsubishi Chemicals

Select some grades from each
class of materials and their blend ratios

Critical!

5 ; Functional
Polypropylene | § > Polymers

Process conditions (Constant)




Mixture design (cont.)

+ (Advanced) Mixture design example

2012-05-31

S GE 33374 TV 5 IR
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previous products

R
®»
'
13

ZIAYHR JLav*

» SHERES

=
30
i
©

71



