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Least squares regression 

• What we will cover 
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[FYI]Least squares vs. interpolation 

Given the data, there are two choices when we want to know the value 

of y at x = (x1 + x2)/2 

 

 

 

 

 

least squares? or interpolation? 

Interpolation is recommended when data are subject to negligible 

experimental error (or noise) 

Ex. In using steam tables 

Otherwise, least squares is recommended. 
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Least squares - usage examples 

Quantify relationship between 2 variables (or 2 sets of variables): 

Manager: How does yield from the lactic acid batch fermentation relate to 

the purity of sucrose? 

Engineer: The yield can be predicted from sucrose purity with an error of 

plus/minus 8% 

Manager: And how about the relationship between yield and glucose 

purity? 

Engineer: Over the range of our historical data, there is no discernible 

relationship. 
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Least squares - usage examples 

Two general applications 

Predictive modeling – usually when an exact model form is unknown. 

Modeling data trends in order to predict future y values 

Simulation – usually when parameters in the model are unknown. 

Getting parameter values in the known model form (e.g., calculate 

activation energy from reaction data) 

Terminology 

y : response variables, output variables, dependent variables, … 

x : input variables, regressor variables, independent variables, … 
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Review: covariance 

Consider measurements from a gas cylinder: temperature (K) and 

pressure (kPa). 

Ideal gas law applies under moderate condition: pV = nRT 

Fixed volume, V = 20 × 10−3m3 = 20 L 

Moles of gas, n = 14.1 mols of chlorine gas, (1 kg gas) 

Gas constant, R = 8.314 J/(mol.K) 

Simplify the ideal gas law to: p = b1T, where 
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Review: covariance (Cont.) 
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Review: covariance (Cont.) 

Formal definition: 

 

1. Calculate deviation variables:  

Subtracting off mean centers the vector at zero. 

2. Multiply the centered values:                                  

16740 10080 5400 1440 180 60 1620 5700 10920 15660 

3. Calculate the expected value (mean): 6780 

4. Covariance has units: [K∙kPa] 

c.f) Covariance between temperature and humidity is 202 [K∙%] 

※ Covariance with itself is the variance: 
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Review: correlation 

Q: Which one (pressure or temperature) has stronger relationship with 

temperature? 

Covariance depends on units: e.g. different covariance for grams vs 

kilograms 

Correlation removes the scaling effect: 

 

 

Divides by the units of x and y: dimensionless result 

 

Gas cylinder example: 

corr(temperature, pressure) = 0.997 

corr(temperature, humidity) = 0.380 
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Review: correlation (cont.) 
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Want to find a relationship y = f(x) other than the above? 



Review: correlation (cont.) 

Remember!  
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Least squares? Least squares regression? 

Regression is the act of choosing the “best” values for the unknown 

parameters in a model on the basis of a set of measured data. 

Linear regression is the special case where the model is linear in the 

parameters.  A straight line has the form: 

 

 

There are many possible ways to define the “best” fit. However, the 

most commonly used measure for bestness is the sum of squared 

residuals. 

Least sum of squares of errors  least squares in short. 

Important: error is from y, not from x. 
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[FYI] why minimize the sum of squares ? 

The least squares model: 

has the lowest possible variance for a0 and a1 when certain assumptions are 

met (more later) 

computationally tractable by hand 

easy to prove various mathematical properties 

intuitive: penalize deviations quadratically 

Other forms: multiple solutions, unstable, high variance solutions, 

mathematical proofs are difficult 
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Least squares (regression) 

It is the basis for : 

DOE (Design of Experiments) 

Latent variable methods 

We consider only 2 (sets of) variables : x and y (or x’s and y) 

Simple least squares 

Multiple least squares 

Generalized least squares 
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Simple least squares 

Wind tunnel example 

How can we find the best line that describe the following data? 
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Data from wind tunnel experiments: 
Drag force (F) at various wind velocities 



Wind tunnel example (cont.) 

From the plot, a linear line seems adequate. 

y = a0 + a1x  

 

At a data point (xi, yi), error between the line 

 and the point is: (see the figure on the right) 

ei = yi –       = yi – a0 – a1xi 

Earlier, least squares means least sum of  

 squares of errors. For all data points, sum 

 of squares of errors is: 

   

We need to find model parameters a0 and a1 that minimize Sr. 

“Least squares” 
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Wind tunnel example (cont.) 

How to find model parameters? 

Take a look at Sr. 

Sr is a parabolic function w.r.t ao and a1 

 and sign of                       are plus. 

Sr becomes minimum where 
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   Rearranging and 

      solving for a0 and a1 



Wind tunnel example (cont.) 

Calculations  
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Wind tunnel example (cont.) 

Calculations 

 

 

 

 

 

 

 

 

 

This is called simple least squares.  
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Wind tunnel example (cont.) 

Results  

 

 

 

 

 

 

 

 

 

Is this OK with you? 
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General modeling procedure 
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Define modeling 
objective 

Variable selection 
Identify the response variables (i.e., y variables), and 
the regressor variables (i.e., x variables) that are to be 

considered 

Design of experiment 
Design an experiment and use it to generate the data 

that will be used to fit the model 

Define the model 
Choose an appropriate form for the model 

Fit the model 
Estimate values for the parameters in the model 

Does the model 
fit? 

N 

Y 

Use the model 

Statistical tools + 
prior knowledge 



Simple least squares  

Summary 

Model form: y = a0 + a1x + e 

                                               becomes minimizes  where 

Rearranging and solving for a0 and a1 
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Simple least squares (cont.) 

Properties 
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Simple least squares  (cont.) 

Questions 

 

 

 

 

 

 

 

what if our model we want to find is non-linear? 

Ex. Activation energy in rate constant 

 

 Linearize ! 
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Linearization 

Want to model non-linear relationships between independent (x) and 

dependent (y) variables. 

1. Make a simple linear model through a suitable transformation. 

           y = f(x) + e          y = a0 + a1x + e 

2. Use previous results (simple least squares) 

 

 

 

※Caution: nonlinear transformation also changes P.D.F of variables (and 

errors) 

We will discuss about this in model assessment.  
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Linearization (Cont.) 
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Polynomial regression 

For quadratic form 

 

 

Sum of squares  

 

 

 Again, Sr has a parabolic shape w.r.t a0, a1, and a2. with plus signs of  
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Polynomial regression (Cont.) 

Rearranging the previous equations gives 

 

 

 

 the above equations can be solved easily. (three unknowns and three 

equations.) 

For general polynomials 

 

From the results of two cases (y = a0 + a1x & y = a0 + a1x + a2x2) 

 

 

 we need to solve (m+1) linear algebraic equations for (m+1) parameters. 
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Multiple least squares 

Consider  when there are more than two independent variables, x1, x2, 

…, xm.  regression plane. 

 

 

For 2-D case, y = a0 + a1x1 + a2x2. 

Again, Sr has a parabolic shape w.r.t a0, a1. 
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Multiple least squares (Cont.) 

Rearranging and solve for a0, a1 and a2 gives 

 

 

 

 

For an m-dimensional plane,  

 

Same as in general polynomials, 

 

 

we need to solve (m+1) linear algebraic equations for (m+1) parameters. 
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General least squares 

The following form includes all cases (simple least squares, polynomial 

regression, multiple regression) 

 

 

 

Ex. Simple and multiple least squares 

 

 polynomial regression 

 

Same as before,  

 

 

we need to solve (m+1) linear algebraic equations for (m+1) parameters. 
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Quantification of errors 
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Quantification of errors (Cont.) 
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Quantification of errors (Cont.) 

Coefficients of determination, R2 
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R2 = 1 when Sr = 0 : perfect fit (a regression curve passes through data points) 

R2 = 0 when Sr = St : as bad as doing nothing 

It is evident from the figures that a parabola is adequate. 
R2 of (b) is higher than that of (a) 



Quantification of errors (Cont.) 

Warning! : R2 ≈ 1 does not guarantee that the model is adequate, 

nor the model will predict new data well.  

It is possible to force R2 to be one by adding as many terms as there are 

observations. 

Sr can be big when variance of random error is large. 

(Usual assumption on error  is  that error is random is unpredictable) 

 

 

 

 

Practice using Excel 

(1) Wind tunnel example with higher polynomials 

(2) Simple regression with increasing random noise 
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Confidence intervals - coefficients 

Coefficients in the regression model have confidence interval. 

 

Why? They are also statistics like     & s. That is, they are numerical 

quantities calculated in a sample (not entire population). They are 

estimated values of parameters. 
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Confidence intervals – coefficients (cont.) 

Matrix representation of GLS 
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Confidence intervals – coefficients (Cont.) 

Example 

Fitting quadratic polynomials to five data points 
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Can you solve this problem? 

Three unknowns 

Five equations 



Confidence intervals – coefficients (Cont.) 

Solutions 

 

 

 

 

 

1. LU decomposition or other methods to solve L.A.E 

 

2. Matrix inversion 

 

computationally not efficient, but statistically useful 
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Confidence intervals – coefficients (Cont.) 

Matrix inversion approach 

 

 

Denote             as the diagonal element of                

Confidence interval of estimated coefficients 
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Confidence intervals – coefficients (Cont.) 

For a linear model, 

 C.I. for a1(slope) 

  

 C.I. for a0 (intercept) 
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Confidence intervals – prediction 

C.I for predicted y,  
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Model assessment 

When we do not know the model form, we have to assess the model 

before use it after we fit a regression model. 

However, in order to assess the model and make inferences about the 

parameters and predictions from the model, we will have to employ 

statistics and make some assumptions about the nature of the disturbance. 

Tools for model assessment 

Sy/x, R
2 (quantitative) ( Do not use) 

Residual Plots (qualitative) 

Normal probability chart (qualitative or quantitative) 

Test for lack of fit (quantitative) 

This is used when the dataset includes replicates.  It is based on 

analysis of variance (ANOVA). 
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Model assessment - assumptions 

What is the most desirable errors in regression ? 

 

 

 

Assumptions on error 

Error is additive 

The variance of the error is constant and is not related to values of the 

response or values of the regressor variables. 

There is no error associated with the values of the regressor variables. 

Error is a random variable with Gaussian distribution N(0,2) (2  usually 

unknown) 
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Model assessment – residual plots 

Recall the assumptions on error 

Error is not related to the values of response or regressor variables. 

 

Then, assumptions will not be valid if the model is wrong. 

Following residual plots will reveal this. 

Residuals vs. regressor variables 

Residuals vs. fitted y values (     ) 

Residuals vs. “lurking” variables (i.e. time or order) 

 These plots will show “some patterns” when a model is inadequate. 
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Model assessment – residual plots (con’t) 

Examples 
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Model assessment – residual plots (con’t) 

Examples of residual plots 
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Model assessment – normal probability plot 

Recall the assumptions on error 

Error is a random variable with Gaussian distribution N(0, 2 ) (2  usually 

unknown) 

Then, errors will fall onto a straight line (y = x) in a normal probability 

plot. (especially useful when the number of data points is large) 
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Normal probability plot 

Alternatively, normality test 

can be used. 



Model assessment – ANOVA (Test for lack of fit) 

The variance breakdown 
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Model assessment – ANOVA (Test for lack of fit) 

The variance breakdown 

 

 

Ratio of SReg/Sr follows F distribution when corrected with degree of 

freedom. 

If regression is not meaningful, the ratio (Se/Sr) is small and St ≒ Sr. 
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Model assessment – ANOVA (Test for lack of fit) 
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Model assessment – ANOVA (Test for lack of fit) 

 

2012-05-16 Adv. Eng. Stat., Jay Liu©  51 

 
ANOVA Table 

Source of Var. Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F0 

Regression SReg p MSReg=SReg/p MSReg/ MSE 

Residual error Sr n-p MSE=Sr/(n-p)  

Total St n-1   

 

Compare F0 to the critical value Fp,n-p;a 

 
What we are doing is a test of hypothesis. 

We are testing the hypothesis: 

  H0 : 0p0  bb   

  H1 : at least one parameter is not equal to zero. 
 



[FYI]Meaning of a p-value in hypothesis test 

A measure of how much evidence we have against the null hypothesis. 

Null hypothesis (H0) represents the hypothesis of no change or no effect. 

Much research involves making a hypothesis and then collecting data to 

test that hypothesis. Then researchers will collect data and measure the 

consistency of this data with the null hypothesis. 

A small p-value is evidence against the null hypothesis while a large p-value 

means little or no evidence against the null hypothesis. 

Traditionally, researchers will reject a null hypothesis if the p-value is less 

than 0.05 (a = 0.05). 

 p-value can mean that the possibility that you can be wrong when rejecting 

the null hypothesis. 
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Integer variables in the model 

Integer variables 0 and 1 can represent qualitative variables. 

Example: raw material from Spain, India, or Vietnam 

y = a0 + a1x1 + . . . + akxk + r1d1 + r2d2 + r3d3 

d1 = 1 and d2 = 0 and d3 = 0 for Spain 

d1 = 0 and d2 = 1 and d3 = 0 for India 

d1 = 0 and d2 = 0 and d3 = 1 for Vietnam 

Often called indicator variables for this reason 
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Integer variables in the model 

Example 

Want to predict yield when two different impeller 

 used.  Yield = f(temperature, impeller  type) 

Build two different models 

 (one for axial, one for radial) 

Build one model using indicator variable.   y = a0 + a1T + rd 

y = a0 + a1T + rdi 

di = 0 for axial, di = 1 for radial 
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Leverage effect 

Unusual observations influence the model parameters and our 

interpretation 

 

 

 

 

 

 

To avoid the leverage effect, 

Remove outliers before regression (but do not delete without investigation) 

Use different Sr (no longer least squares) 
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Outliers have an over-proportional effect on resulting regression curves. 



Causal relation and correlation 

Causal relation 

Cause and effect relation 

Has physical/chemical/engineering meanings 

x and y are not interchangeable 

Direction exists. 

Correlation 

(Linear) relationship between two variables 

No physical/chemical/engineering meanings. 

Average height of 20’s men vs. year 

x and y are interchangeable 
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Advanced topics 

Testing of least-squares models 
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Advanced topics - Testing of least-squares models 
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Advanced topics 

Correlated x’s 

MLR solution 

 

 

 

 

 

When two or more x’s are correlated,                 becomes nearly singular, i.e., 

ill-conditioned. 
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Advanced topics – correlated x’s 

High/no correlation between x1 and x2 

 

 

 

 

What if very small (measurement ) noises added to x’s 

 

 

 

 

 

What will happen to your MLR model? 
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Advanced topics – correlated x’s 

If high correlation among x’s: 

unstable solutions for a 

predictions uncertain also 

Geometrically speaking 
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Advanced topics – correlated x’s 

Remedies? 

Use selected x variables  stepwise regression 

Use ridge regression 

Use multivariate methods (will not be covered in this lecture) 
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Advanced topics 

What we want to know: 

How do we select the form of the model? Which variables should be 

included? Should we include transformations of the regressor variables? 

…. 

What we want: 

We would like to build the “best” regression model 

We would like to include as many regressor variables as is necessary to 

adequately describe the behaviour of y. At the same time, we want to keep 

the model as simple as possible. 

 Stepwise regression start off by choosing an equation having the single best 

x variables and the attempts to build up with subsequent additions of x’s one 

at a time as long as these additions are worthwhile. 
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Advanced topics – stepwise regression 

Procedure 

1. Add a x variable to the model (the variable that is most highly correlated 

with y). 

2. Check to see whether or not this has significantly improved the model. One 

way is to see whether or not the confidence interval for the parameter 

includes zero.  (of course you can use hypothesis test) If the new term or 

terms are not significant, remove them from the model. 

3. Find one of the remaining x variables that is highly correlated with the 

residuals and repeat the procedure. 
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Advanced topics 

Ridge regression (Hoerl, 1962; Hoerl & Kennard, 1970a,b) 

A modified regression method specifically for ill-conditioned datasets that 

allows all variables to be kept in the model. 

This is possible by adding additional information to the problem to remove 

the ill-conditioning. 

The objective function to minimize:  

Least squares estimates have no bias but large variance, while ridge 

regression estimates have small bias and small variance. 
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Advanced topics – ridge regression 

Procedure 

1. Mean center and scale all x’s to unit variance 

 

 

2. Rewrite the model as: 
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Advanced topics – ridge regression 

3. The objective function to use for the optimization is to minimize 

 

 

        Therefore,  

4. Solve the optimization problem in Step 3 for several values of k between 0 

and 1 and choose that value of k at which the estimates of b see to stabilize.  

Otherwise, choose k by validation on new data. 
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Advanced topics 

Non-linear regression 

General form of a non-linear regression model 

 

In a linear model,                        . In a non-linear model, f() woulds have any 

form. E.g.,  

 

Remember that nonlinear transformation also changes P.D.F of variables 

(and errors)? What does this mean? 
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Advanced topics – non-linear regression 

The approach is exactly the same as for linear models 

We use the same objective function: 

 

 

 

 

 

     All we need is to minimize S over a. but how? 
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Advanced topics – non-linear regression 

The big difference between linear and nonlinear regression is that in 

general, the optimization problem for a nonlinear model does not have 

an exact analytical solution. 

Therefore, we have to use a numerical optimization algorithm such as: 

Gauss-Newton 

Steepest Descent 

Conjugated Gradients 

Any other optimization algorithm 
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Advanced topics – non-linear regression 

When using an optimization algorithm to solve nonlinear regression 

problems, one needs to be able to specify: 

1. an expectation function (i.e. the form of the model) 

2. Data 

3. starting guesses for a 

4. stopping criteria 

5. possibly other “tuning” parameters associated with the optimization 

algorithm 
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Advanced topics – non-linear regression 

Problems with Numerical Optimization 

Failure to converge 

Finding only a local minimum and not the global minimum 

Requires good starting guesses for the parameters 

Can be sensitive to the choice of convergence criteria and other “tuning 

parameters” of the algorithm 

Sometimes requires specification of the derivatives of the model with 

respect the the parameters. 
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