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Univariate statistics 

Overview 
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Reading: Textbook Ch. 3 ~ 5 
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Usage examples 

Co-worker: Here are the yields from a batch system for the last 3 years 

(1256 data points) 

yesterday’s yield was less than 160g/L, something wrong? 

Yourself: I developed a new catalyst giving 95% conversion. Is this 

better than the previous catalyst? 

Manager: does reactor 1 have better final product purity than reactor 2? 

Potential customer: what is the 95% confidence interval for the density 

of your powder ingredient? 
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Concepts 
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Variability 

Life will be pretty boring if 

 

 

 

 

 

 

 

 

No plant engineer is needed (and this course would be unnecessary) 
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But in reality, we have plenty of variability in our recorded data:  

 

 

 

 

 

 

 

 

Variability 
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※ In most engineering work, the data is subject to variability/error. 

Therefore, many of the variables we will work with will be random 

variables. The statistics we evaluate will also be random variables. 



 

This is because … 

 

 

 

 

All this variability keep us process engineers employed, but it comes at a 

price. 

 

Variability 
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Variation in raw material properties 

Production disturbances, Feedback control, Operating 

staff, Measurement and sampling variability, … 



Customers expect both uniformity and low cost when they buy your 

product. Variability defeats both objectives. 

1. Customer totally unable to use your product: 

 Ex1. A polymer with viscosity too high 

 Ex2. Oil that causes pump failure 

2. Your product leads to poor performance. 

 Ex1. Customer must put in more energy (melting point too high) 

 Ex2. Longer reaction times for off-spec catalyst 

3. Your brand can be diminished. (ex. Toyota quality issues in 2010) 

The high cost of variability in your final product 
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Variability also has these costs: 

1. Inspection costs: 

Too expensive and inefficient to test every product 

Low variability means you don’t need to inspect every product 

2. Off-specification products cost you and customer money: 

Reworked 

Disposed 

Sold at a loss 

The high cost of variability in your final product 
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High variability in raw materials 

Example 

2012-03-18 Adv. Eng. Stat., Jay Liu©  9 

Univariate Statistics  



This course is about variability 

This section discusses 

1. Visualizing, quantifying, and then comparing variability 

 

Following sections 

• SPC : construct monitoring charts to track variability 

• Least Squares: variation in one variable affects another 

• DOE : intentionally introduce variation to learn about process 

• Multivariate: dealing with multiple variables, simultaneously 

extracting information 
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Histograms 

Histogram: graphical summary of the variation in a measured 

variable 

Shows number of samples that occur in a category: called a frequency 

distribution 
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Continuous variables: create category bins 

(usually equal-size) 

A rule of thumb:  nbins #



Histograms 

A relative frequency is sometimes preferred: 

we do not need to report the total number of observations, N 

 it can be compared to other distributions 

 if N is large enough, then the relative frequency histogram starts to 

resemble the population’s distribution 

the area under the histogram is equal to 1 (related to probability) 
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[FYI] Summary statistics 

Given a large table of values, it is often difficult to visually arrive at any 

meaningful information. 

Often we try to summarize the information in a set of data by 

condensing all of the information into a couple of statistics that will 

give us a feel for the behavior of the system from which the data were 

sampled. 

As a minimum, to characterize a dataset, we usually look for a measure 

of location and a measure of variability. 

 Measures of location: mean, median, mode 

 Measures of variability: variance, range, standard deviation 
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[FYI] Nomenclature 

Population 

Large collection of potential measurements (not necessary to be infinite, a 

large N works well) 

Sample 

Collection of observations that have actually occurred (n samples) 

Parameter 

Value that describes the population’s distribution 

Statistic 

An estimate of one of the population’s parameters 
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[FYI] Nomenclature 

Outliers 

A point that is unusual, given the context of the surrounding data 

4024, 5152, 2314, 6360, 4915, 9552, 2415, 6402, 6261 

4, 61, 12, 64, 4024, 52, -8, 67, 104, 24 

Median (location) 

Robust statistic: insensitive (robust) to outliers in the data 

Mode (location) 

The most frequently occurring data (in a distribution) 

Range (variability) 

the difference between the largest and the smallest values 
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Probability distributions 

 

 

Just a review; please read textbook for more details 

Focus on when to use the distribution 

And how the distribution looks 
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Probability distributions 

Probability distribution 

a description of the set of possible values of X, along with the probability 

associated with each of the possible values 

Probability density function 

a function that enables the calculation of probabilities involving a 

continuous random variable X.  It is analogous to the probability mass 

function of a discrete random variable.  It is usually denoted by f(x).  The 

area under the curve f(x) between x1 and x2 defines the probability of 

obtaining a value of X in the interval [x1, x2]. 
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Probability distributions 

A probability density function must satisfy the following properties: 
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Probability distributions 

Cumulative Density Function 

Usually denoted by F(x) and defined by: 

 

 

Cumulative distribution: area underneath the distribution function 

Inverse cumulative distribution: we know the area, but want to get back 

to the value along the x-axis. 
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For binary events: event A and event B 

 

Pass/fail, or yes/no system 

p(pass) + p(fail) = 1 

 

 

 

Example: What is the probability of obtaining exactly 3 heads if a fair 

coin is flipped 6 times? 

Binary (Bernoulli distribution) 
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Uniform distribution 

Each outcome is equally as likely to occur as all the others. 

 The classic example is dice: each face is equally as likely. 

 (This sort of phenomena is not often found in practice) 

Probability distribution for an event with 4 possible outcomes: 
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Poisson distribution 

Distribution of counts in the cases such as 

Particles contamination in semiconductor manufacturing 

Flaws in rolls of textiles 

Atomic particles emitted from a specimen 

 

 

Example 

In a copper wire manufacturing, suppose that the number of flaws follows a Poisson 

distribution with a mean of 2.3 flaws per millimeter. Determine the probability of 

exactly 2 flaws in 1 millimeter of wire. 
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Normal distribution 

     x ~ N(μ,  2) 

     x: variable of interest 

     f(x) probability of obtaining that x 

     μ  population mean for variable x 

       population standard deviation (positive) 

     Distribution is symmetric about μ 
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In engineering applications we 

often assume that measured 

continuous random variables are 

normally distributed. Why? 

normal PDF 

(probability density function) 



The Standard Normal Distribution 

The standard normal distribution refers to the normal distribution with mean 

zero and variance one. 

The standard normal distribution is important in that we can use tabulated 

values of the cumulative standard normal distribution for any normally 

distributed random variable by first standardizing it. We standardize a 

random variable X that is N(, 2) using: 

 

 

 

Units of z if x were measured in kg, for example? 

Standardization allows us to straightforwardly compare 2 variables that have 

different means and spreads 
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Self exercise 

Assume x = biological activity of a drug, x ~ N(26.9, 9.3). Probability of 

x  ≤ 30.0? 

Assume x = yield from batch process, x ~ N(85 g/L, 16 g/L). Proportion 

of yield values between 77 and 93 g/L ? 

 

Recommendation: make sure you can read a statistical table 

2012-03-18 Adv. Eng. Stat., Jay Liu©  25 

Univariate Statistics  



2012-03-18 Adv. Eng. Stat., Jay Liu©  26 

Univariate Statistics  



Exercise 

The temperature of a heated flotation cell under standard 

operatingconditions is believed to fluctuate as a normal p.d.f. with a 

mean value of 40 degrees Celsius and a standard deviation of 5 degrees 

Celsius.  What is the probability that the next measured temperature 

will lie between 37 degrees Celsius and 43.5 degrees Celsius? 

 

(solution) 

Interpretation: Temperature, T ~ N(40,52)  P(37≤x≤43.5)? 

 

In minitab, “calc”“probability distributions” 
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[FYI] Nomenclature 

Mean 

Measure of location (position) 

Population mean 

 

Sample mean 

Variance 

Measure of spread, or variability 

Population variance 

 

 

Sample variance 
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[FYI] Nomenclature 

Expected value 

 

 

The mean and variance are special cases of this general definition 

Properties of Expectations and Variances: 
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[FYI] Nomenclature 

Covariance 

Covariance is a measure of the linear association between random 

variables. 

Population covariance: 

 

Sample covariance: 
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[FYI] Nomenclature 

Correlation 

a scaled version of covariance.  The scaling is done so that the range of  is 

[-1, 1] . 

Population correlation: 

 

Sample correlation: 
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Central limit theorem 

Central limit theorem 

The average of a sequence of values from any distribution will approach 

the normal distribution, provided the original distribution has finite 

variance. 

 

 

 

 

If x1, x2, x3, …, xn are taken from a population with mean  and finite 

variance 2. Then as n  ∞, 

 sample mean       approaches to normal distribution. 

                                        approaches to standard normal distribution. 
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Central limit theorem 

Example: throwing dice 
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Statistical independence 

The assumption of independence is widely used. It is a condition for the 

central limit theorem.  

Independence 

The samples are randomly taken from a population. If two samples are 

independent, there is no possible relationship between them. 

A questionnaire is given to students. Are the marks independent if 

students discuss the questionnaire prior to handing it in? 

Often people say that random variables x and y are independent if 

correlation is zero. Is this enough? 
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[FYI]Continuous vs. discrete variables 

Probability density function 

For continuous random variables 

 

 

 

 

 

Probability mass function 

For discrete random variables 
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Statistical inference 

In engineering applications, we are more often in the position that we 

have a sample of data, and based on this data we want to make some 

statements about our belief in the population parameters (i.e. the 

properties of the “true” system).  This is the realm of statistical 

inference. 

 

 

 

 

 ex. Comparing conversions of two different catalysts. 
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Sampling distribution 

In most engineering work, the data is subject to error (such as sensor 

noise).  Therefore, many of the variables we will work with will be 

random variables.  The statistics we evaluate will have a probability 

distribution associated with them. 

The probability distribution of a statistic (a random variable whose 

value is based on a sample of data) is called a sampling distribution. 

Examples of statistics: sample mean/variance/correlation/… 

2012-03-18 Adv. Eng. Stat., Jay Liu©  37 

Univariate Statistics  



Sampling distribution 

This implies that there is a certain amount of uncertainty in the value 

we obtain for a statistic. 

The idea is that if we collected another sample in the same way and 

evaluated the statistic based on the new data we would likely obtain a 

different value.  If we continued to collect new data and evaluate the 

statistic we would be able to construct a histogram of all of the value of 

the statistic.  This histogram would be an estimator of the sampling 

distribution of the statistic. 

The sampling distribution provides information about the amount of 

variation in the statistic and the nature of the variation. 
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Confidence interval 

Confidence intervals are an important way to quantify and state how 

uncertain is an estimate calculated from samples. 

Confidence intervals convey two types of information: 

A summary of the behavior of the data in that sample 

Indications of the characteristics of the population from which the 

sample was obtained. 

A confidence interval is a range calculated based on the data in a 

sample and assumptions about the underlying p.d.f.  This interval has a 

specified probability of containing the true value of the parameter being 

studied. 

A confidence interval for a parameter is a range of plausible values for 

the parameter in the light of the available data. 
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Confidence interval - examples 

We may measure 20 temperatures in a heated vessel and calculate the mean to 

be 620 degrees Celsius.  The mean of 620 is a (point) estimate of the “true” 

temperature of the vessel.  We then calculate a 95% confidence interval for the 

mean to be C.I.=[ 600, 640] oC 

This says that we are 95 % confident that the true temperature of the vessel is 

between 600 and 640 degrees Celsius (assuming our assumptions are valid).  

This range also gives an indication of the amount of uncertainty in our estimate 

of the temperature in the vessel.   

Yet another interpretation is that if we continued to sample 20 temperatures, 

compute the means and confidence intervals, 95% of the confidence intervals 

would contain the true value of the temperature.  
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