Diffusion

Bioprocess Laboratory
Department of Chemical Engineering
Chungnam National University

The Diffusion Application

- Heat transfer is a diffusion process, so the generic diffusion equation has the same structure as the heat equation.
- Heat equation

$$\delta_{ts} \rho C_p \frac{\partial T}{\partial t} - \nabla \cdot (\underline{k} \nabla T) = Q$$

• Diffusion equation

$$\delta_{ts} \frac{\partial c}{\partial t} + \nabla \cdot (-D\nabla c) = R$$

Subdomain formulation

- The diffusion equation coefficients to specify on the subdomains are as follows.
- Diffusion equation

$$\delta_{ts} \frac{\partial c}{\partial t} + \nabla \cdot (-D\nabla c) = R$$

Coefficient	Description
δ_{ts}	Time scaling coefficient
D	Diffusion coefficient
D_{ij}	Diffusion coefficient tensor
R	Reaction rate

Boundary formulation

Boundary conditions are as follows.

Coefficient	Description
$c = c_0$	Concentration
$-n \cdot (-D\nabla c) = N_0 + k_c (c_b - c)$	Flux
$n \cdot (-D\nabla c) = 0$	Insulation/Symmetry
$n \cdot (-\underline{D}\nabla c) = 0$	Axial symmetry

• You specify the boundary conditions in the boundary settings dialog box.

Model of insect population density using the diffusion equation

- This FEMLAB model examines the effects that nymph transport in multiple plant species has on the resulting population distribution.
- Nymphs equation

$$\rho \frac{\partial u}{\partial t} = \nabla \cdot (\frac{m}{4\tau} \nabla u)$$

• Distribution equation for x, y, t domain. Center of the domain is (x_0,y_0) .

$$u(x, y, t_0) = u_0 \exp(-a\sqrt{(x - x_0)^2 + (y - y_0)^2})$$

Model of insect population density using the diffusion equation

• The domain is 300 X 300 mm.

Plant species	$m (mm^2)$	τ (s)
Wheat	5443	600
Mayweed	235	600

• The model simulates this process for a period of 1 hour.

Modeling using the FEMLAB Model navigator

- 1. Open the FEMLAB
- Select **Diffusion** from the **Diffusion** folder in the **Model Navigator**.
- 3. Click **OK**

Modeling using the FEMLAB Options and settings

- From the **Options**menu, choose
 Axes/Grid Settings.
- 2. Set xmin and ymin to -200 and xmax and ymax to 200

Modeling using the FEMLAB Options and settings

- Open the Constants dialog box from the Options menu.
- 2. Enter the following constants.

Modeling using the FEMLAB Options and settings

- On the Options menu, point to Expressions and then click Scalar Expressions.
- 2. Enter the following expression.

Modeling using the FEMLAB Geometry modeling

- 1. Click the **Rectangle/Square** button and draw a square with corners in (-150,-150) and (0,0).
- 2. Draw three more squares in the following locations.

Modeling using the FEMLAB Physics settings (boundary)

- 1. Open the **Boundary Settings** from the **physics** menu.
- 2. Make sure the **Boundary condition** is **Insulation/Symmetry** for all outer boundaries.

Modeling using the FEMLAB Physics settings (subdomain)

- Open the Subdomain Settings dialog box from the Physics menu.
- 2. On the **c** page set **D isotropic** to mu1 in
 subdomain 1 and 4, and
 to mu2 in subdomain 2
 and 3.
- 3. On the **Init** page set $c(t_0)$ to c_0 in all subdomains.

Modeling using the FEMLAB Mesh generation

1. Initialize the mesh and refine it once.

Modeling using the FEMLAB Solving the model

- Open the Solver Parameters dialog box.
- 2. Select the **Time dependant** solver and change the **Times** to 0:200:3600.
- 3. Click the **Solve** button.

Modeling using the FEMLAB Postprocessing and visualization

- Open the Plot
 Parameters dialog box.
- 2. Click the **Surface** tab.
- 3. Under Surface data, make sure that, Concentration, c is selected in the **Predefined quantities** list
- 4. Select the **Height data** check box.
- 5. Under **Height data**, select Concentration, c in the **Predefined quantities** list.
- 6. Click **OK**.

Result analysis

Result analysis

Conclusions

- As time proceeds, the population distribution becomes distorted due to differences in the plant transport properties.
- Initially it appears that the nymphs are attracted to the mayweed. However, as the process moves towards a steady-state condition, the population becomes uniform in both plant species.