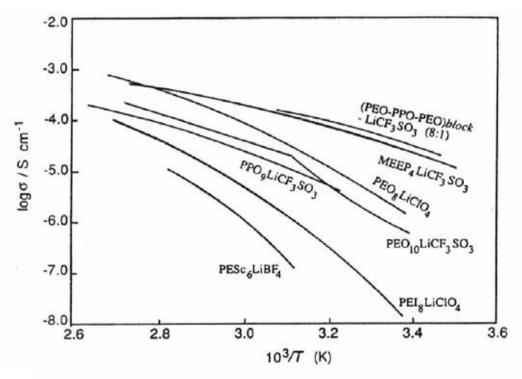
# Polymer Electrolytes

Jong Hak Kim Chemical Engineering Yonsei University

### Polymer Electrolytes (PEs)

- Newest solid ionics: for E generation, storage, distribution
  - Applications to electrochemical devices
  - Synthesis of new polymer electrolytes
  - Physical studies of their structure & charge transport
  - Theoretical modeling of charge transport processes
- Charge transport mechanisms
  - Inorganic: ion "hopping mechanism"
  - PEs: local motion of polymer (segmental motion) in the vicinity of the ion
- Two general types
  - polymer/salt complex: coordination P + salt (PEO/LiClO<sub>4</sub>)
  - polyelectrolytes: covalently attached charged group




### **Solid Ionics**

- Crystalline solid electrolytes
  - H<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Ag<sup>+</sup>, F<sup>-</sup>, O<sub>2</sub><sup>-</sup>, & di- or trivalent ions conductors
  - (i) a high concentration of mobile ions, (ii) a low activation energy for ionic motion from site to site
  - conductivity: hopping mechanism along channels
  - in crystal structure: 1-, 2-, 3-D network of channels
- Glass electrolytes: amorphous solid conductors
- Molten electrolytes
  - molten salts or mixtures high conductivities (> 1 Scm<sup>-1</sup>)
  - e.g., LiCl-KCl eutectic (m.p. 355 °C < LiCl at 613 °C)
  - Drawback: high operation T & corrosion



### Polymeric electrolytes

- good interfacial contacts with electrode materials (not brittle)
- Conductivity (by 100~1000) < than Liq. or ceramic electrolytes</li>
- thin film configuration compensate for the lower values



Conductivity vs. temperature for some of the first studied polymer electrolytes.

PESc = poly(ethylene succinate), PEO = poly(ethylene oxide), PPO = poly(propylene oxide), PEI = poly(ethylene imine), MEEP = poly(bis(methoxyethoxyethoxy)phosphazene)



- Properties of polymer electrolyte
  - adequate conductivity for practical purposes
  - low electronic conductivity
  - good mechanical properties
  - high chemical, electrochemical and photochemical stability
  - ease of processing



### Fundamentals of polymer electrolyte

- 1. Solvent (liquid) free system: ionically conducting phase is formed by dissolving salts in polymer.
- 2. Gel electrolyte: formed by dissolving salt in polar liquid and adding inactive polymeric material.
- 3. Plasticized electrolyte: essentially a gel electrolyte but is usually associated with the addition of small amounts of a high dielectric constant solvent to enhance its conductivity
- 4. Ionic rubber: a liquid electrolyte comprising a low temperature molten salt mixture, reduced to a rubbery condition by addition of a small amount of high Mw polymer
- Memb ionomer, H<sup>+</sup> conducting polyelectrolyte, comprising fluorocarbon backbone to which sulfonic acid are bonded chemically. e.g. Nafion. (with plasticizer)



### Thermodynamics of salt dissolution

• Dissolution of salts  $\rightarrow$  reduction in  $\triangle$ G of the system at constant T & P  $\rightarrow$  consider  $\triangle$ H,  $\triangle$ S

$$\Delta G = \Delta H - T \Delta S$$

- Overall entropy change on dissolution
  - (+): due to the break up of crystal lattice and the subsequent disordering of ions in the system
  - (-): caused by the stiffening of chains as they coordinate to cations
- Major enthalpy changes on dissolution
  - (+): due to the lattice energy of the salt
  - (-): due to cation solvation



### **Polymer solvents**

- A polymer that is capable of strongly coordinating cations
- polyethers, polyesters, polyimines, polythiols
- have strong coordinating groups to dissolve salts easily
- High Mw PEO-based polymer electrolytes
  - poor conductors in crystalline
  - amorphous; loss of mechanical stability
- Atactic PPO
  - amorphous since random arrangement of methyl group
- Random polyethers (-(OCH<sub>2</sub>CH<sub>2</sub>)<sub>m</sub>-OCH<sub>2</sub>-)<sub>n</sub>: amorphous, dimethyl siloxy units
- Comb-branched copolymers
  - enhance flexibility of the system & conductivity
- Networks
  - higher ionic conductivity & dimensional stability by optimized crosslinking



### **Host Polymers**

### **Amorphous & Rubbery**

- PEO
  - T < 60 °C, presence of crystalline part → reduce conductivity
- Atactic poly(propylene oxide), PPO
- random arrangement of CH<sub>3</sub> along the chain
  - → prevent the order necessary for crystallization of polymer
  - → not best electrolyte (∵ steric hindrance of CH<sub>3</sub> side group)
    - 1) limits the segmental motion
    - 2) reduces polymer-cation interaction



- Poly (methylene oxide), (CH<sub>2</sub>O)<sub>n</sub>
- superficially good because of its high conc. polar groups
- but not good in practice since hard with high cohesive energy
- Amorphous poly(ethylene oxide), PEO
- consists of medium but randomly-variable length segments of PEO joined by methylene oxide units
- → methylene oxide units break up the regular helical pattern of PEO and suppress crystallization

Methoxy linked poly(ethylene oxide).

- PEO with DMS units
- introduced btn. PEO units to produce an amorphous polymer

Dimethyl siloxy linked poly(ethylene oxide)



### Amorphous comb polymers

- short chain polyethers attached to a polyphosphazene or a polysiloxane backbone
- excellent hosts for alkali metal salts since high flexibility of PN backbone to promote ion transport

### Branched & Network polymer ionics

- at a microscopic level, the degree of crosslinking must not be so great as to make the local polymer segments rigid, thereby increasing  $T_\alpha$  and reducing ion transport
- chemical crosslinking strategy → chemical or irradiation crosslinking



- Additives: small polar molecules into PEs
- improvement in conductivity
  - i) plasticize polymer → high flexibility & segmental motion
  - ii) solvate cation (or anion) → reduce ion-ion interactions
- e.g., propylene carbonate
   poly(acrylonitrile) & poly(vinyl pyrrolidone) + LiClO<sub>4</sub> + PC
  - → high conductivities (1.7 x 10<sup>-3</sup> at 20 °C)
- Additives: small chelating agents
  - short chain poly(ethylene glycol), cyclic polyethers
  - break up ion-ion interactions



### **Other Polymer Hosts**

Some coordinating polymers which have been used as solid solvents for polymer electrolytes

| Name                                        | Monomer unit                                                                      |
|---------------------------------------------|-----------------------------------------------------------------------------------|
| Poly(propylene oxide) <sup>a</sup>          | [CH <sub>2</sub> CH(CH <sub>3</sub> )O],                                          |
| Poly(ethylenimine) <sup>b</sup>             | (CH <sub>2</sub> CH <sub>2</sub> NH) <sub>n</sub>                                 |
| Poly(alkylene sulfides) <sup>c</sup>        | $[(CH_2)_pS]_n$                                                                   |
| Poly(ethylene succinate) <sup>d</sup>       | [OCH <sub>2</sub> CH <sub>2</sub> OC(O)CH <sub>2</sub> CH <sub>2</sub> C(O)],     |
| Poly(N-methylaziridine) <sup>e</sup>        | [CH <sub>2</sub> CH <sub>2</sub> N(CH <sub>3</sub> )] <sub>n</sub>                |
| Poly(epichlorohydrin) <sup>f</sup>          | [OCH <sub>2</sub> CH(CH <sub>2</sub> Cl)],                                        |
| Poly(vinyl acetate) <sup>g</sup>            | {CH <sub>2</sub> CH[OC(O)CH <sub>3</sub> ]},                                      |
| Poly[bis(methoxyethoxyethoxy) phosphazene]* | ${NP[O(CH_2CH_2O)_2CH_3]_2}_n$                                                    |
| Oxymethylene-linked poly(oxyethylene)       | [(CH <sub>2</sub> CH <sub>2</sub> O) <sub>m</sub> CH <sub>2</sub> O] <sub>m</sub> |



### Salts

- Polyatomic anions with monovalent charge are the best candidates (∵ weak anion solvation).
- e.g., water soluble LiF (strong solvation of F by water)
  - → LiF insoluble in PEO
  - → LiClO<sub>4</sub> highly soluble in PEO
- Large, polarizable, monovalent anions low lattice E
  - → better dissolution
  - → CIO<sub>4</sub>-, CF<sub>3</sub>SO<sub>3</sub>-, (CF<sub>3</sub>SO<sub>2</sub>)<sub>2</sub>N-, (CF<sub>3</sub>SO<sub>2</sub>)<sub>3</sub>C-, AsF<sub>6</sub>-, PF<sub>6</sub>-
  - → I & Br (but Cl, F poor solubility)
- Solvation H of salt depends on cation-polymer interaction
- → dissolution only occurs if atoms which are capable of coordinating the cations are available on the polymer chains



- Weaker solvation of (-CH<sub>2</sub>-O-)<sub>n</sub> & (-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-O-)<sub>n</sub>
- the chains wrap around cation without excess strain
   → right spacing of (-CH<sub>2</sub>-CH<sub>2</sub>-O-)<sub>n</sub> unit
- other coordination groups: -NR- , -NH- and -S-
- Interaction strength btn. cation and coordinating group classified according to hard/soft acid base theory (HSAB)
  - → HA prefer HB and SA do SB; e.g., polyether vs Li<sup>+</sup>

#### 1) hard/soft acids

- (a) hard: small cations with no valence electrons, e.g., alkali, alkaline earth ions, Mg<sup>2+</sup>
- (b) soft: larger cations with several valence electrons, Hg<sub>2</sub><sup>+</sup>

#### 2) hard/soft bases

- (a) hard: non-polarizable ligands of high electronegativity (-O-)
- (b) soft: more polarizable groups, e.g., thio group
  -O- > -NH- > -S-



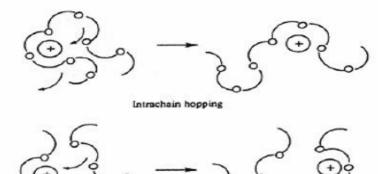
#### **Polyelectrolytes**

- Materials that have polymeric backbones with covalently bonded ionizing groups attached to them
- Common functional group: SO<sub>3</sub>-, COO-, NH<sub>3</sub>+, = NH<sub>2</sub>+

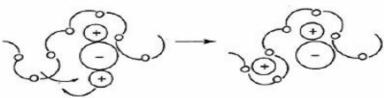
#### **Gel electrolytes**

- Great interest commercially as alternative to the solvent-free systems → higher, more practical ionic conductivities
- Formed by dissolving salt in polar liquid and adding polymer network to give the material mechanical stability
- Two methods to achieve macroscopic immobilization of solv.
- 1) increase the viscosity of liq. electrolyte by adding soluble polymer, e.g., PEO, PMMA, PAN until gel consistency is achieved
- 2) load the liq. electrolyte into microporous matrix, e.g., porous polyethylene

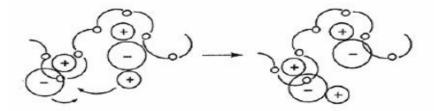



#### Low molecular solvents

- propylene carbonate (PC), ethylene carbonate (EC),
   N,N-dimethyl formamide (DMF), y-butyrolactone (GBL)
- high dielectric constant, high B.P.
- increase salt dissociation
- low viscosity → high ionic mobility
- Polymeric materials: PAN, PVDF, PVC, PMMA
- Belicore (USA) Co.
  - commercially available gel electrolyte (for Li battery)
  - PVdF-co-HFP (hexafluoropropylene) electrolyte
     (Li salt solution in mixed carbonate esters)
  - HFP  $\rightarrow$  decrease crystallinity of PVdF component & enhancing its ability to absorb liquid
  - Hybrid polymer electrolyte: porous polymer with < submicron</li>
     + organic solvent







### **Mechanisms of ion conduction**



Interchain hopping



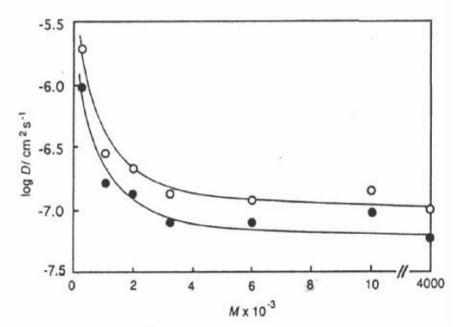
Intrachain hopping via ion cluster



- 'dry' polymer electrolyte: polymer itself is immobile (macroscopically)
- → ions are transported by the semi-random motion of short polymer segments

Intercluster hopping

(b)


Representation of cation motion in a polymer electrolyte (a) assisted by polymer chain motion only; (b) taking account of ionic cluster contributions



### **How ions transported?**

### Solvent & ion transport

- cations in liquids or low  $M_{\rm W}$  polymer; ions can move together with their coordinated solvent, not in high  $M_{\rm W}$  polymer
- When  $M_W$  > 3200 g/mol,  $M_W$  of polymer has no significant effect on cation mobility.



Variation of log D for <sup>7</sup>Li in PEO-LiCF<sub>3</sub>SO<sub>3</sub> with an O:Li ratio of 20:1 at (●) 70 and (○) 90°C as a function of polymer molecular weight, M



- For high M<sub>w</sub> polymer hosts,
  - chain diffusion is small and makes little contribution to mechanism for ion transport
  - the motion of ions in polymer electrolytes is strongly dependent on segmental motion of the polymer host

### Dynamic bond percolation theory (DBP)

- Microscopic model → conductivity due to combination of ion/polymer cooperative motion with the occasional independent ion movement.
- Time scale for the latter is much shorter than for polymer relaxation, different cation and anion motions.
- cation → making and breaking of coordinate bonds with motion between coordinating sites
- anion → hopping between occupied site and void

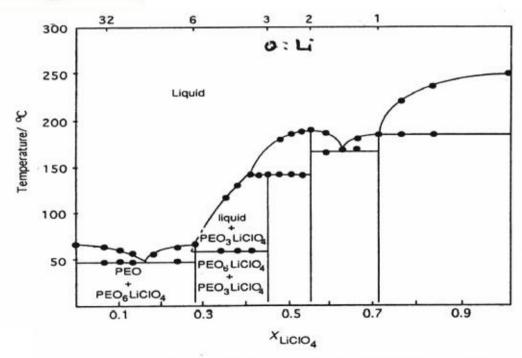


### Macroscopic approach

- Empirical relationship: conductivity vs. temperature
  - amorphous PEs depart from the classical Arrhenius relation

$$\sigma = \sigma_0 \exp \left[ - E_a / k_B T \right]$$

 Vogel-Tamman-Fulcher (VTF) equation: ions are transported by semi-random motion of short polymer segments


$$\sigma = \sigma_0 \exp \left[ -B / (T-T_0) \right]$$

- Free volume-based models: motion occurs as a result of the redistribution of free volume within the system
- Configurational entropy model: based upon entropy, not volume, with transport modeled on group cooperative rearrangements of polymer chains rather than a void-to-void jumping mechanism



### Morphology

- General techniques to characterize polymer electrolyte structure and morphology
  - optical microscopy, DSC, NMR, XRD
- Phase diagrams



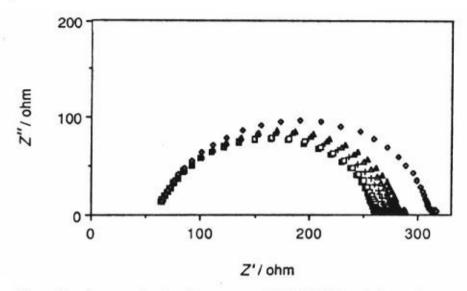
Phase diagram of the PEO-LiClO<sub>4</sub> system. The vertical boundaries indicate the formation of 6:1, 3:1, 2:1 and 1:1 crystalline complexes



### **Preparative Techniques**

- Solvent-free electrolyte film
- 1) Solvent casting casting → solvent evap. → heating under vacuum
- 2) Hot pressing method
- grinding polymer & salt at liquid N₂ Temp. → hot pressed
   ; totally solvent free
- Gel electrolyte film: importance of polymer matrix




### Suitable polymer electrolytes?

- Minimum requirements
- ionic conductivity: 10<sup>-2</sup> 10<sup>-3</sup> Scm<sup>-1</sup> ideal at RT (min. 10<sup>-5</sup> Scm<sup>-1</sup> for practical use)
- electrochemical stability in a voltage window-compatibility:
   chemically & electrochemically compatible with electrodes
- Thermal stability
- Mechanical stability
- Availability: available & inexpensive
- Electrode-electrolyte interface
- different interfacial processes, e.g., electron transfer mechanisms



#### Lithium anode

 lithium metal/PEO → thin layer of third phase formed between two bulk phases



Growth of a passivating layer at a  $PEO_8LiClO_4$ -Li boundary at 95°C. Ac impedance data taken at t = 0 ( $\blacksquare$ ), 0.5h ( $\square$ ), 2.5h (+), 4h ( $\triangle$ ), 5h ( $\blacktriangle$ ) and 22h ( $\diamondsuit$ )

- passive layer composition: LiF (for LiCF<sub>3</sub>SO<sub>3</sub> electrolyte) or Li<sub>2</sub>O (for LiClO<sub>4</sub> electrolytes), inhomogeneous
  - → low ionic conductivity



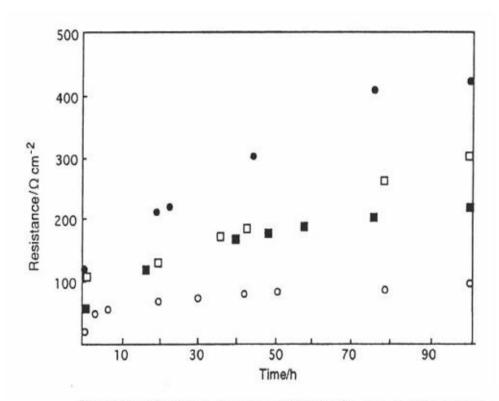
#### Intercalation cathode

- provide a mechanism for reversible and kinetically fast solidstate electrochemical reactions
- Li secondary battery, electrochromics, sensors, solar cells

- e.g., V<sub>2</sub>O<sub>5</sub>/PEO electrolytes with LiClO<sub>4</sub>
- two semicircle in a.c. impedance
  - $\rightarrow$  high frequency semicircle; ionically conducting surface layer that grows on the  $V_2O_5$
  - → low frequency semicircle; charge transfer between surface layer and the electrode
- total interfacial resistance; many times greater than bulk resistance → minimize !!



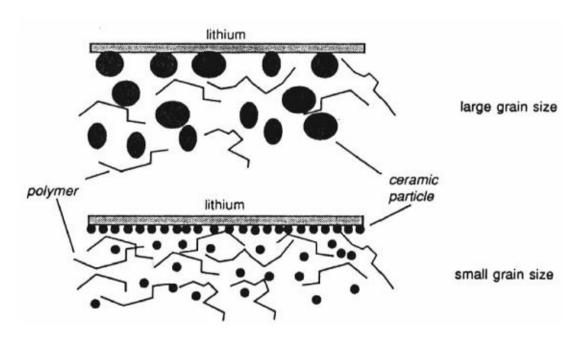
# Nanocomposite polymer electrolytes Mixed phase electrolytes & nanocomposites


- ceramic or glassy electrolytes vs. polymer electrolytes
  - higher conductivity, better thermodynamic stability
- polymer vs. ceramic/glassy electrolytes
  - flexible, superior interfacial contacts
  - processed as thin large area films
- mixed phase PEs-ceramics of nanometer grain size
  - **⇒** nanocomposites

#### Components of some mixed phase electrolytes

| Ceramic                                                   | Polymer electrolyte                   |
|-----------------------------------------------------------|---------------------------------------|
| Li <sub>3</sub> N                                         | PEO-LiCF <sub>3</sub> SO <sub>3</sub> |
| y-LiAlO <sub>2</sub>                                      | PEO-LiClO <sub>4</sub>                |
| α-LiAlO <sub>2</sub>                                      | PEO-LiClO <sub>4</sub>                |
| NASICON                                                   | PEO-NaI                               |
| α-Al <sub>2</sub> O <sub>3</sub>                          | PEO-LiClO <sub>4</sub>                |
| $\beta''$ -Al <sub>2</sub> O <sub>3</sub>                 | PEO-NaI                               |
| $\theta$ -Al <sub>2</sub> O <sub>3</sub>                  | PEO-NaI                               |
| SiO <sub>2</sub>                                          | PEO-NaI                               |
| Zeolite, $[(Al_2O_3)_{12}(SiO_2)_{12}]$                   | PEO-LiBF <sub>4</sub>                 |
| 1.2Li <sub>2</sub> S-1.6LiI-B <sub>2</sub> S <sub>3</sub> | Polyethylene                          |




- Conductivity: a beneficial effect of ceramic additives
- Interfacial properties: Improved stability by nanocomposite
  - resistance of interfacial passivation layer



Variation of interfacial resistance at 70°C under open circuit conditions. ( )  $Li|PEO_8LiBF_4|Li$ ; ( )  $Li|PEO_8LiBF_4| + 10$  wt.% nanosize  $Al_2O_3|Li$ ; ( )  $Li|PEO_8LiBF_4| + 20$  wt.% nanosize  $Al_2O_3|Li$ ; ( )  $Li|PEO_8LiBF_4| + 20$  wt.% microsize  $Al_2O_3|Li$ 



- Why ceramic or glass powder render the interface more stable?
- 1) Reactivity
  - : formation of highly conducting product (Li<sub>3</sub>N) to facilitate ion transport
- 2) Shielding effect
  - : ceramic/glass reduce the contact between Li and polymer



Schematic diagrams of the lithium-composite-electrolyte interface. The smaller particles are able to cover a greater surface area, minimizing the area of lithium electrode exposed to species that give rise to passivation



### Proton conductors

- → anhydrous conductors: PEO-H<sub>3</sub>PO<sub>4</sub>, PEI-H<sub>2</sub>SO<sub>4</sub> or H<sub>3</sub>PO<sub>4</sub>, PVP-H<sub>3</sub>PO<sub>4</sub>; high conductivity (∵ high intrinsic conductivity of acid)
- → proton-vacancy conducting polymers: PEO<sub>n</sub>NH<sub>2</sub>SO<sub>2</sub>NH<sub>2</sub>
- ightarrow hydrated proton conducting membranes: polyelectrolyte + water
- → polymer electrolyte fuel cell employ hydrated perfluorosulfonic acid such as Nafion (DuPont), Dow XUS-13204.10, Chlorine Engineers Membrane C

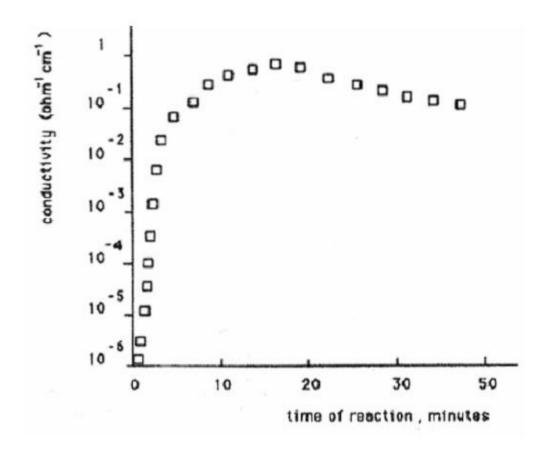
Dow experimental membrane n = 3.6-10

Du Pont's NAFION® n = 6.6, m = 1



# **Conducting Polymer**

#### Polymer electrodes: conjugated polymer


#### **Polyacetylene**

(CH)<sub>x</sub>; room T conductivity;
 10<sup>-5</sup> Scm<sup>-1</sup> for trans, 10<sup>-9</sup> Scm<sup>-1</sup> for cis



#### Exposure to oxidizing or reducing agents

→ increase several orders of conductivity e.g., exposure to halogens: poor conductor approaching that of metals





## **Doping process**

- p-doping process
- exposure to oxidizing agent (X)
- formation of positively charged polymer complex & reduction of X

$$(CH)_x \rightarrow [(CH^{y+})]_x + (xy)e^{-}$$
  
 $(xy)X + (xy)e^{-} \rightarrow (xy)X^{-}$ 

with total reaction

$$(CH)_x + (xy)X \rightarrow [(CH^{y+})]_x + (xy)X \rightarrow [(CH^{y+})X_y]_x$$

where X- = I-, Br...

X- → dopant counter anion

y: ratio btn. dopant ion and polymer repeating unit

→ doping level

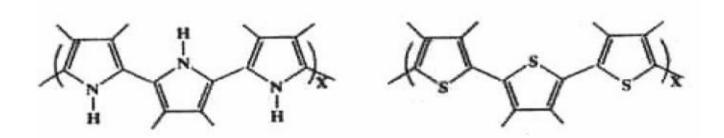


### n-doping process

- exposure to reducing agent (M)
- formation of negatively charged polymer complex & oxidation of M

$$(CH)_x + (xy)e^- \rightarrow [(CH)_y - ]_x$$
  
 $(xy)M \rightarrow (xy)M^+ + (xy)e^-$ 

with total reaction


$$(CH)_x + (xy)M \rightarrow [(CH^{y-})]_x + (xy)M^+ \rightarrow [M_y + (CH^{y-})]_x$$

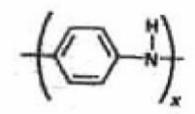
where M⁺ = Na⁺, Li⁺... → dopant counter cation



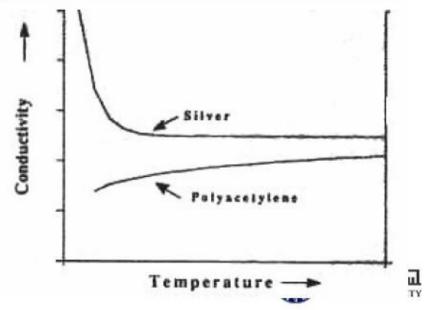
#### Heterocyclic polymers

polypyrrole & polythiophene




### Polyacetylene

 degenerate ground state; two geometric structures with same energy and different sequence single-double bonds




### Polyaniline

 prepared electrochemically, by oxidation of aniline in acid media



- doping  $\rightarrow$  not induce changes in the number of electrons associated with the polymer chain, but related to a highly symmetrical  $\pi$  delocalized structure
- conductivity vs. T; polymer ~ SC



### Mechanism of doping processes

- "doping": same terminology with inorganic semiconductor, but the doping processes of conducting polymers are quite different from those of inorganic semiconductors
- Semiconductor: rigid lattice, doping is well described by band models
- → doping processes; introduction of impurities into the crystal lattice with the intergap energy levels near CB or VB; conduction proceeds via a coherent propagation of electrons and/or holes across the lattice
- Polymer: flexible chains, favor localized chain deformation → impurities or doping agents do not become part of the structure, rather are inserted within the polymer chain & can be easily removed by applying an opposite electrical driving force; doping process are reversible; the spinless bipolaronsor solitons transport the current



### Mechanism of doping processes

#### Two contributions

- Intrachain transport: average conjugation length of chains
- Interchain transport: regularity of polymer structure
   (∵ conductivity increases by ordering of structure)
- Methods for monitoring the doping processes
- Optical absorption: intergap transition changes absorption
- in situ spectroelectrochemical cell measurement

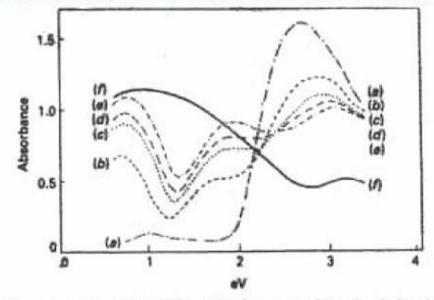
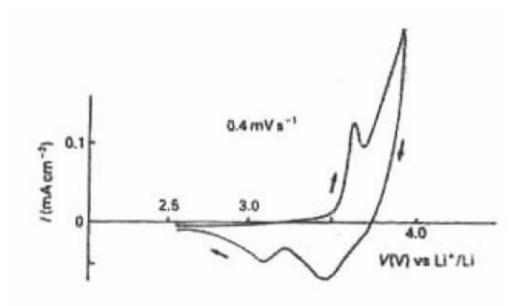




Fig. 9.8 Spectral evolution of polydithienothiophene upon electrochemical evolution



- Microbalance (QCM, quartz crystal)
- Cyclic voltammetry & a.c. impedance e.g., CV of  $(CH)_x$  in  $LiClO_4$ -PC: anodic (doping) & cathodic (undoping) peaks
- → reversible process, two structural sites, long tail: diffusion controlled kinetics





### **Application of polymer electrode**

Batteries ; lithium/polypyrrole batteries

Characterized by the following electrochemical process:

$$(C_4H_5N)_v + (xy)LiClO_4 \stackrel{charge}{====} (C_4H_5N^{3+})(ClO_4^{-})_{xy}]_v + (xy)Li$$

Optical display (electrochromic device)

Display is a battery with a color change. Electro-chemical process:

$$[C_5H_7S]_v + (xy)LiClO_4 = \frac{doping}{undoping} [(C_5H_7S^{7+})(ClO_4^-)_{xy}]_v + (xy)Li$$
(red)
(blue)