Chapter 2. Chain Conformations in Polymers

2.1 Introduction

Conformation : Due to degree of freedom for rotation about ^σ bonds

- Rotational positions of ethane $\text{CH}_3\text{-CH}_3$)
	- Staggered position

Eclipsed position \sim energy barrier : 11.8 kJ/mol Intermediate position cf.) At room temp., $RT = 2.5$ kJ/mol

Staggered position (most stable)

Eclipsed position (least stable)

Intermediate position, definition of torsion angle (ϕ)

Figure 2.2 Conformational energy of ethane as a function of torsion angle.

• n-butane ($\text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_3$) stable states : trans(T), gauche(G, G')

Figure 2.3 Conformational states of n-butane. Note that the views of the gauche conformers are along the middle carbon-carbon bond. Carbon - shaded; hydrogen - white.

- An alkane with n carbons

How many different conformations ? n-1 σ main-chain bonds \rightarrow typical polymer molecule : 10,000 carbons : $3^{9997} \approx 10^{4770}$ conformations 실제로는 이보다 작다. ([∵] symmetry, E of certain conformations is very high!) ex) GG' conformation in n-pentane 3^{*n*−3}

Figure 2.5 Illustration of the steric repulsion in the high-energy GG' conformer in n-pentane: carbon - shaded: hydrogen - white.

- Characteristic dimension of the random chain

: end-to-end distance (양단간거리) *r* or radius of gyration (회전반경) *^s*

 \rightarrow function of MW, chain flexibility & T

$$
s^{2} = \frac{\sum_{i=1}^{n} m_{i} r_{i}^{2}}{\sum_{i=1}^{n} m_{i}} = \frac{\sum_{i=1}^{n} r_{i}^{2}}{n}
$$
 if all m_{i} 's are the same

 r_i : vector from the center of gravity to atom *i*

$$
\left\langle s^2\right\rangle = \frac{\left\langle r^2\right\rangle}{6}
$$

2.2 Experimental determination of dimensions of chain molecules

Size of the molecular coils : dependent on the solvent

Good solvent $(\alpha > 1)$ ~ expands the coil Poor solvent $(\alpha < 1)$ ~ shrinks the coil Theta solvent $(\alpha = 1)$ ~ intermolecular & interamolecular interactions are similar

 α : coil expansion factor

Common methods for determining the coil size : *light scattering* & *viscometry*

• *Light scattering* of polymer solutions as a function of coil size

$$
\frac{Kc}{R_{\theta}} = \frac{1}{M} + 2A_2c + 3A_3c^2 + \cdots
$$
\n
$$
\frac{c}{R_{\theta}} \propto \frac{1}{M_w}, \qquad \frac{1}{P(\theta)} = 1 + \frac{16}{3}\pi^2 \frac{\langle r^2 \rangle}{6\lambda^2} \sin^2 \frac{\theta}{2}
$$
\n
$$
\frac{Kc}{R_{\theta}} = \frac{1}{M_w P(\theta)} + 2A_2c + \cdots
$$
\n
$$
\Rightarrow \frac{Kc}{R_{\theta}} = \frac{1}{M_w} + \frac{1}{M_w} \frac{16}{3}\pi^2 \frac{\langle r^2 \rangle}{6\lambda^2} \sin^2 \frac{\theta}{2} + 2A_2c
$$

 θ : scattering angle, λ : wave length, c : concentration : second virial coefficient, *^K* : optical constant (굴절률에 관련) *A*2 $P(\theta)$: particle scattering function (effect of chain size & conformation) R_{θ} : Rayleigh's ratio (reduced scattered intensity), $I_{\theta}r^2/I_0$ I_{θ} : intensity of observed light $I_{\theta} r^2 / I$

- I_0 : intensity of incident light
- *r* : distance between sample and source

Separate determination of $\overline{M_{w}}$ & $\left\langle r^2 \right\rangle$: Zimm plot

$$
\lim_{\theta \to 0} \frac{Kc}{R_{\theta}} = \frac{1}{M_w} + 2A_2c
$$

$$
\lim_{c \to 0} \frac{Kc}{R_{\theta}} = \frac{1}{M_w} + \frac{1}{M_w} \frac{16}{3} \pi^2 \frac{\langle r^2 \rangle}{6\lambda^2} \sin^2 \frac{\theta}{2}
$$

Figure 2.8 Schematic Zimm plot.

• *Viscometry*

$$
[\eta] = \frac{\Phi(\langle r^2 \rangle)^{3/2}}{M} = \left(\frac{\eta_r - 1}{c}\right)_{c \to 0}
$$

$$
[\eta] \text{ in dl/g, } M \text{ in } \overline{M_n} \longrightarrow r \text{ in cm}
$$

 $\Phi = 2.6 \times 10^{21}$ dl / *mol* cm³ for near-theta conditions (Flory constant) η_r : relative viscosity $\left| \frac{I}{I} \right|$, r : relative viscosity $\left(\frac{\eta}{\eta_0}\right)$

 $\eta_r - 1 \equiv \eta_{sp}$ (specific viscosity)

2.3 Characteristic dimensions of 'Random Coil' polymers

Polymers dissolved in theta solvent,

$$
\left\langle r^2\right\rangle_0 = C n l^2
$$

l : chain length

- *n* : number of chain
- *C* : polymer related constant (depends on the nature of polymer)
- θ : θ condition

Source: Flory (1989) ^a See eq. (2.7).

Flexible backbones exhibit low *C*.

$$
\langle r^2 \rangle = \alpha^2 \langle r^2 \rangle_0
$$

 α : linear expansion factor

$$
\alpha^5 - \alpha^3 = C \Psi \sqrt{n} \left(1 - \frac{\theta}{T} \right)
$$

 θ : θ -temperature

Ψ : interaction entropy (Chap. 4). In a good solvent $(T > θ)$, $\alpha \propto n^{1/10}$

$$
\Rightarrow \langle r^2 \rangle = C_1 n^{1/5} \langle r^2 \rangle_0
$$

= C_2 n^{1/5} n = C_2 n^{6/5}
∴ r \propto n^{3/5} \quad (\triangleq \overline{\trianglelefteq} \overline{\trianglelefteq} | r \propto n^{0.59}) for good solvents
At $T = \theta$, $\langle r^2 \rangle = \langle r^2 \rangle_0$

Molten polymer molecules are unperturbed as they are in θ -solvent. (by Flory)

2.4 Models for calculating average end-to-end distance

Mean square end-to-end distance

$$
\overline{r} = \sum_{i=1}^{n} \overline{r_i}
$$
: end-to-end vector

$$
r^2 = \sum_{i=1}^{n} \overline{r_i} \cdot \sum_{j=1}^{n} \overline{r_j} \dots
$$

- *Freely jointed chain*

$$
\langle r^2 \rangle = nl^2
$$

$$
\langle r^2 \rangle = \alpha^2 Cnl^2
$$

← including the short range (*C*) and long range (α) interactions

Figure 2.10 Definition of quantities in a jointed-chain model.

- *Freely rotating chain*

Bond angle (τ) is constant.

$$
\langle r^2 \rangle = nl^2 \left[\frac{1 + \cos(180 - \tau)}{1 - \cos(180 - \tau)} \right]
$$

$$
= nl^2 \frac{1 - \cos \tau}{1 + \cos \tau}
$$

$$
\begin{pmatrix}\n\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}\n\end{pmatrix}
$$

If
$$
\tau = 90^\circ
$$
, $\langle r^2 \rangle = nl^2$
If $\tau = 109.28^\circ$, $\langle r^2 \rangle = 2nl^2$

 \leftarrow methylene chain with free rotation

Figure 2.11 Three different rotational isomers are generated by torsion about bond i. If the three states are equally populated, the average vector of bond $i + 1$ has no component perpendicular to a vector parallel to the ith bond.

• **Equivalent chain**

$$
\langle r^2 \rangle = C n l^2 = n' l'^2
$$

$$
r_{\text{max}} = n' l'
$$

ex) For polyethylene with *^r*max ⁼ 0.83*nl*

: contour length *nl*

$$
\left\langle r^2 \right\rangle_0 = 6.7nl^2
$$

$$
\therefore \frac{n}{n'} = 9.73, \frac{l'}{l} = 8.07
$$

Figure 2.16 Schematic representation of the equivalent chain.

2.5 Distribution of the end-to-end distance

Expression for the distribution of the end-to-end distance

 \leftarrow Random-flight analysis

Probability of finding the chain end in the point (x, y, z) in a chain originating at the origin with the other chain end :

$$
P(x, y, z)dxdydz = \left(\frac{3}{2\pi \langle r^2 \rangle_0}\right)^{3/2} \exp\left(-3r^2/2\langle r^2 \rangle_0\right) dxdydz
$$

With radial distribution function, $P(r)dr$:

$$
P(r)dr = 4\pi r^2 \left(\frac{3}{2\pi \langle r^2 \rangle_0}\right)^{3/2} \exp\left(-3r^2/2\langle r^2 \rangle_0\right)dr
$$

Figure 2.18 Schematic representation of distribution functions: $P(x, y, z)$ and $P(r)$.

2.6 Chains with preferred conformation

PE : all-trans conformation is the most stable (zigzag planar) PP : Three polymer repeating units in one turn of the helix POM : 9 repeating units in 5 turns

Figure 2.20 View along helical axis of $3₁$ helix of isotactic polypropylene. The cross-section of the backbone part of the molecule is triangular and the pendant methyl groups are directed out from the corners of the triangle.

