Ch 09
Rheology of entangled polymers



Entanglements

no excluded volume effect -> configuration distribution is Gaussian
no hydrodynamic interaction
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Figure 3.22 Storage modulus, G', as a function of frequency reduced to 160°C for nearly monodis-

perse polystyrenes of molecular weight ranging from 580,000 to 47,000, from left to right. (Reprin_ted Polystyrene A A | |
with permission from Onogi et al., Macromolecules 3:109. Copyright 1970, American Chemical 0 ) 2 3 ry s s
Society.) Constant + logM

Figure 3.3 Relationship between zero-shear viscosity and molecular weight for several nearly |
monodisperse melts. For clarity, the curves are shifted relative to each other along both the abscissa
and ordinate. (From Berry and Fox 1968, reprinted with permission from Springer Verlag.)



Universal behavior
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Reptation
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Figure 3.2.3 A polymer molecule entangled in a mesh of other polymer chains. (From Graessley
1982, reprinted with permission from Springer Verlag.)

‘Figure 3.25 Reptation of a polymer molecule out of
its tube, where, to aid visualization, the tube of Fig. 3-
24 has been “straightened out.” (From Graessley 1982,
reprinted with permission from Springer Verlag.)

;

(A) (B) (c)

Figure 3.24 (A) A polymer molecule is entangled with neighboring molecules that (B) confine the
given chain to a tube-like region. (C) The tube contour is roughly that of a random walk with step
size equal to the tube diameter, a. This random walk is called the primitive path; its contour length is

much less than the contour length of the chain itself. (From Graessley 1982, reprinted with permission
from Springer Verlag.)

Figure 3.4 Time sequence of images showing retraction of one end of a fluorescing 60-..m-long
DNA molecule entangled in a solution of other, non-fluorescing DNA molecules. The fluorescing
molecule was attached at one end to a small sphere that was pulled through the solution using a
laser-optical trap, to form the letter R. The free end then retracts through a “tube-like” region formed
by the surrounding mesh of other, invisible DNA chains. (Reprinted with permission from the cover
of Science, May 6, 1994; Copyright 1994, American Association for the Advancement of Science.)



Non-reptative relaxation mechanisms

Primitive path fluctuations ->

(a) (b)

Figure 3.27 Depiction of the “constraint-release” mechanism of relaxation. In (a), the topological
constraint imposed on chain A by chain C is released, as the end of chain C crosses under chain A.
Even if C eventually re-entangles with A, chain A has been given a chance to change its orientation,
as ill d in the two-di ional depiction in (b) (From Doi and Edwards, copyright © 1986 by
‘Oxford University Press, Inc. Used by permission of Oxford University Press, Inc.)

<- Constraint release

Figure 3.26 A fluctuation of the primi-
tive-path length occurs when a chain ran-
domly pulls its end away from the end of
the tube. The probability of such a fluctua-
tion decreases exponentially with the size
of the fluctuation. (From Graessley 1982,
reprinted with permission from Springer
Verlag.)



Doi-Edwards theory

Linear relaxation modulus
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Figure 3.29 Linear moduli G’ and G” versus frequency shifted via time—temperature superposition !
to 27°C for a polybutadiene melt of molecular weight 360,000 and of low polydispersity. The dashed |
line is the prediction of reptation theory given by Eq. (3-67); the solid line includes effects of
fluctuations in the length of the primitive path. (From Pearson 1987.)
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Doi-Edwards theory
Nonlinear modulus and damping function

time-strain separability G(t,y) =G(t)h(y)
Incomplete retraction
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Figure 3.30 (a) The nonlinear shear relaxation modulus G (¢, ¥)/y as a function of time for various
strain amplitudes for a 20% concentrated solution of polystyrene of molecular weight 1.8 x 10° in
chlorinated diphenyl. Each curve corresponds to a different strain, ranging from 0.41 to 25.4, with
the lower curves corresponding to the higher strains. (b) The curves are superimposed at times longer
than 7, = 20 sec via vertical shifting by an amount A (y) plotted in Fig. 3-31. (From FEinaga et al.
1971, with permission from the Society of Pblymer Science, Japan.)

Independent alignment approximation: after retraction, each strand is
oriented independently of the others, and the change in orientation produced

by retraction is neglected.



Doi-Edwards theory

Constitutive equation
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Separable K-BKZ equation
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Prediction of reptation theory
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Figure 3.32 The predictions of the Doi-Edwards integral mode!l for the normalized uniaxial
extensional (or elongational) viscosity 77 and for the viscometric shear coefficients n(y) and W (p).
Also shown are the predictions of the differential model, Eq. (3-77). (From Larson, 1984b, with
permission from the Journal of Rheology.)
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Prediction of reptation theory
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Figure 3.33 The solid curve is the
dimensionless shear stress 012/ G%,
versus dimensionless shear rate y 1,
predicted by the Doi-Edwards con-
stitutive equation, Eq. (3-71). The
dashed curve adds a speculated con-
tribution to the stress from Rouse
modes. (From Doi and Edwards
1979, reproduced by permission of
The Royal Society of Chemistry.)

Figure 3.34 Shear stress (open sym-

bols) and first normal stress dif-
ference (closed symbols) as func-
tions of shear rate for two solutions
of very-high-molecular-weight poly-
methylmethacrylate (M = 23.8 x 106)

in toluene at a concel
g/dL (squares) and 6 gm/
(From Bercea et al. 1993
sion.)

0‘()2.001 0.01 041 1 10 100 1000
Shear Rate, y(sec™)

Convective constraint re

dimensionless stress

lease ->

0.001 —r—rrrrmy T u ™ 4 T T T T T T
0.001 001 0.1 1 10 1000.001 0.01 0.1 1 10 100 0.001 0.01 01 1 10 100

100

Stress maximun
leads to material instability

Fast flow convects away the
polymer molecules containing a
given chain, and destroys the tube
surrounding that chain, faster
than the chain itself can reptate
out of the tube.
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Figure 3.35 Steady-state values of the reduced shear stress o12/ G‘,’V and first normal stress difference N1/ GY,
as functions of dimensionless shear rate 1, predicted by the equations of a constraint-release reptation theory
(see Problem 3.10) for 74/7, = (a) 50, (b) 150, and (c) 500, where 7, is the reptation time and 7, is the Rouse
retraction time. See also Marracci and Ianniruberto (1997). (From Larson et al. 1998, with permission.)



Semiempirical constitutive equations

Integral type  o=[ m(t-t)g,(1,, 1, Bt t)+ 4, (1,1, )t )]t

g =fe™ 3 pfem™3 4 =0, with I=a,+1-a)l, Wagner model

1

¢ = 2l —3)+0(1,-3) $, =0 Papanastasiou model

Differential type <Vs+ E(s +G(o,D)+ H (o) = 2GD
T

G=£((D-o+0-D), H=0 (Johnson and Segalman 1977)

G=0, H= a%c :6 (Giesekus 1966, 1982)

H= i{exp(%trcj —1}5 (Phan —Thien and Tanner 1977,1978)
T

G= %%D :6(c+Gd), H =0 (Larson1984b)

G =a(2D:D)"?6, H =0 (White and Metzner 1963)
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