Ch 02
Fundamentals of rheology



Types of flow

Shear flow
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Figure1.5 Geometries for producing shearing flows. (Adapted from Macosko, Rheology Principles,
Measurements, and Applications, Copyright © 1994. Reprinted by permission from John Wiley &

Sons.)
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Extensional flow
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Figufe 1:12 Rotating clamp device used by Meissner to impose a uniaxial extensional strain on
a cylindrical filament of polymer of length Lo. Leaf springs in one of the sets of rotating clamps

allow the extensional stress to be measured. (From Meissner 1971, rep:
Steinkopff Publishers.)

tV

rinted with permission from

Figure 1.13 The stretching of a filament of viscoelastic liquid (shaded) sticking
to two flat plates, one moving and the other attached to a force transducer. (From
Macosko, Rheology Principles, Measurements, and Applications, Copyright © 1994,
Reprinted by permission from John Wiley & Sons.)



Shear flow

Steady shear viscosity n=cly
Transient shear viscosity n (y,t)=o(y,t)y

Storage and loss moduli & (t) = y,[G'(@)sin(at) + G"(w) cos(at)]
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Dynamic properties
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Figure 1.11 Storage and loss moduli for a low density polyethylene “Melt 1.” (These data were
measured at several temperatures and shifted along the frequency axis by a “shift factor” ar to form
collapsed curves; see Section 3.5.2). The lines are empirical fits of Egs. (3-25a) and (3-25b) to the
data. (From Laun 1978, reprinted with ‘pemlission from Steinkopff Publishers.)
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Figure 1.8 Illustrations of frequency-dependent
storage and loss moduli G’ and G” for prototypical
“liquid-like” and “solid-like” materials.



Shear viscosity and normal stress difference
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Figure 1.9 Steady-state shear viscosity 7 and first normal stress coefficient W; versus shear rate g g
for a low-density polyethylene melt, “Melt 1.” (From Laun 1978, reprinted with permission from "3 N
Steinkopff Publishers.) 8B
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Figure 1.10 Transient shear stress o and first normal stress difference N after start-up of steady
shearing for a low-density polyethylene melt, “Melt I,” at a shear rate y = 1 sec-1. (From Laun 1978,
reprinted with permission from Steinkopff Publishers.)



Extensional flow
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Figure1.14 Uniaxial extensional viscosity 7 (open symbols) and shear viscosity 7 (closed and half-
closed symbols) as functions of time after start-up of steady uniaxial extension or steady shearing for
“Melt L.” (From Meissner, J. Appl. Polym. Sci. 16:2877, Copyright © 1972. Reprinted by permission
of John Wiley & Sons, Inc.)



Kinematics

Velocity gradient tensor
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Deformation gradient tensor
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Figure 1.16 Definition of the deformation tensor E for the shearing deformation of a unit cube.

(From Larson 1988, with permission.)
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Figure 1.17  Definition of the deformation tensor E for a general extensional deformation of a unit
cube. (From Larson 1988, with permission.)



Finger tensor B=E' .E
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Stress tensor

F, = (Fyy, Fao, Fyg)

— F; =(Fy1, Fy2 Fia)
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Figure 1.18 The definition of the state-of-stress tensor in terms of force components acting on the
faces of a cube. (From Larson 1988, with permission.)
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