
Stability Analysis of PDEs

Part I. Fiber Spinning Process
Stability analysis of Newtonian fluids in spinning process

1. Characteristics of spinning processes
Typical extensional deformation processes: spinning, film casting, tubular film

blowing, coating, etc.
Schematic diagrams of several processes:
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Spinline variables:
spinline velocity, spinline radius, temperature, stress,
strain rate, apparent extensional viscosity,
crystallinity, orientation (Birefringence), etc

Phenomena occurring in the spinline
Rheological deformations (mostly extensional but some shear also)
Cooling/solidification (coagulation)
Orientation
Crystallization

Important subjects in the dynamics of spinning
Spinnability ; Stability ; Sensitivity ; Productivity
Spinnability: the ability to pull a melt out into a long thread

pre-requisite for fiber spinning / melt fracture
ductile fracture (=necking), cohesive fracture (=brittle fracture)
capillary jet stability (surface tension versus extensional viscosity)

Stability: the most important factor of productivity (including product quality)
Draw resonance - a unique instability phenomenon / even for Newtonian fluids

self sustained periodic oscillation of spinline variables
(spinline cross-sectional area, spinline tension, etc.)

Sensitivity: propagation of processing disturbances
effects of the various process and material variables
empirical approach
simulation studies (steady/transient responses, frequency response)

Productivity: high spinning speed, fiber quality control, stable operation

Typical instabilities occurring in the spinning
Filament breakage (or spinnability): Capillarity

Ductile fracture (=necking)
Cohesive fracture (=brittle fracture)

Melt fracture
Draw resonance: Periodic variations of process variables (most notably extrudate
cross-sectional area) with respect to time, occur and critically affect the process
productivity as the drawdown ratio is increased beyond certain critical values. This
intriguing instability phenomenon frequently arises in many extension deformation
processes such as fiber spinning, film casting, and film blowing.



Schematic diagram describing draw resonance phenomenon
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2. Linear stability analysis of Newtonian fluids
● 선형안정성 분석방법: 지배방정식의 정상상태 해에 외란 을 도입하여(normal modes)

외란이 수렴 또는 발산하는지를 의 부호로 판정 즉 가장 큰eigenvalues . ,

의 실수부분이 양수이면 해가 발산하여 공정은 불안정해지고 음수이면 해eigenvalue

가 수렴하여 공정은 안정하게 된다 이 때 가장 큰 실수부분이 일 때의 연신비 권. 0 (

취속도와 압출속도의 비 를 임계연신비라 하여 안정성을 판별하는 기준이 된다) .

(1) Governing equations
Assumptions: one-dimensional flow, isothermal, no secondary forces included,

starting point: max. extrudate swell

Eqn. of continuity:
˜

Eqn. of motion:

Constitutive eqn.: ,

Boundary conditions: A = Ao, V = Vo at z=0
V = VL = rVo at z=L

(2) Dimensionless variables
˜

z

r

L

Area: Ao

velocity: Vo

Temperature: To

Area: AL

velocity: VL

Temperature: TL



(3) Dimensionless governing equations

Eqn. of continuity:

Eqn. of motion + Constitutive eqn:

Boundary conditions: a=v=1 at x=0
v=r at x=1

(4) Steady state
v=rx or a=r-x

(5) Linear stability analysis

Governing  
PDE System

Transient response

ODE  System
( ) 0p,y,yR =&

y = state  variables
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p = parameters
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General disturbances
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a. Perturbation variables:

,

or ,

b. Linearized governing equations: homogeneous ODE

B.C.'s:

c. Differentiation
Eqn. of continuity
i=1, (Central differences)

i=2,

·
·
·

i=n-1,



i=n, (Backward differences)

Eqn. of motion + constitutive eqn.
i=1, (Central differences)

i=2,

·
·
·

i=n-1,

d. Matrix from

where ,

B(n,n) =



C(n,n-1) =

D(n-1,n) =

E(n-1,n-1) =

e. Methods for evaluating eigenvalues from eigensystems
Shift-invert transformation method

- In general, the eigenvalues associated with the equations that are not time
dependent are indefinitely large.

- These infinite eigenvalues have to be removed from the equation system.
Otherwise, they will be the ones with largest real part.



(M: mass matrix. M is singular in this case.)

(shift is real)

- The infinite eigenvalues of the generalized problem are mapped into zero
eigenvalues of the simple eigenvalue problem.

Matrix transformation for the simplified eigenproblem

Table 1. The largest real and imaginary parts of eigenvalues at various r.

r real part imaginary part

15 -0.628 13.075

20 -0.0237 13.975

20.218 0 14.009

22 0.181 14.273

25 0.459 14.674

Table 2. Critical drawdown ratio with the number of mesh.

Number of mesh Critical draw ratio

100 20.2611

200 20.2286

300 20.2227

400 20.2206

500 20.2195

700 20.2188

1000 20.21841

1100 　　 20.21834

1200 20.21828

2000 20.21809



Part II. Linear Stability Analysis of Catalytic Reaction
Governing equations

- Chemical reaction A B in a porous catalyst pellet

Figure: Schematic diagram of diffusion and reaction in a porous slab catalyst.

- Assumptions: 1st-order reaction.
there is no surface resistance to the transport of mass or energy.

˜ ˜

˜ ˜

B.C.: c=cf, T=Tf at ˜=L

˜ ˜
at ˜=0

(D: effective mass diffusivity, DT: effective thermal diffusivity)

Dimensionless governing equations
- Dimensionless variables:

(Lewis number)

˜ ˜

- Dimensionless governing equations

,

B.C.: x = y = 1 at z=1

at z=0

- define



Steady-state catalyst particle

,

B.C.:

, (0 xs 1, 1 ys 1+ )

(steady state is independent of the Lewis number)

Linear stability analysis
(1) Case1: Adiabatic perturbation, L=1

- , w = x + y (w: residual enthalpy)

B.C.: w = 1 + at z=1

at z=0

- Another expression of energy eq.:

- If the systems is initially perturbed from the steady state such that following
relationship is preserved ( at t=0). w is a constant as 1+ .

- Linearization of above equation by defining,

B.C.: at z = 0; = 0 at z = 1

linear homogeneous PDE with linear homogeneous B.C.

- Method for solving the above linearized equation:

the method of separation of variables, , '(0) = (1) = 0

̇
̇ , ( is a constant):

The eigenvalues are all real, so an oscillatory response is impossible.

For the largest eigenvalue,

(2) Case 2: L=1
- Adiabatic perturbation is the worst perturbation for the catalytic reaction with L=1.
- Define two deviation variables: ,



B.C.: at z = 0, = = 0 at z = 1

- By separation of variables,

,

̇

solution by separation of variables is possible if and only if 1= 2=e t

- Linearized equations:

(3) Case 3: L 1

- Using the deviation variables,

- Linearized equations:

B.C.:


