Nonlinear Systems Analysis II. Case Study of the Quadratic Map

Objectives:

- See the similarity between discrete time dynamic models and numerical methods
- Determine the asymptotic stability of a solution to the quadratic map
- Understand the concept of a bifurcation

Bifurcation parameter: the parameter changing the number and character of solutions of the system.

(Asymptotically stable → periodic solution → chaos...)

Chaos: exhibits sensitivity to initial conditions, impossible long-term predictability.

may occur in a single nonlinear discrete equation

(population growth model in this chapter)

(3 continuous ODEs are required in continuous models. i.e., Lorenz model)

Noninear dynamics, dynamical systems theory, nonlinear science: terms for the branch of mathematics related to chaos.

1. A Simple Population Growth Model

$$n_{k+1} = n_k + b_k - d_k$$
 (n_k, n_{k+1}: population at the time period k and k+1 b_k, d_k: number of births and deaths during k)

Simple relationship:
$$n_{k+1} = n_k + \alpha_b n_k - \alpha_d n_k = (1 + \alpha_b - \alpha_d) n_k = \alpha n_k$$

(similar to fixed-point iteration) $\Rightarrow n_{k+1} = \alpha^k n_0$

 α <1: population decreases *Unrealistic...*

 α >1: increases more refined model required

 α =1: remains

2. Quadratic Map (Logistic Equation)

$$x_{k+1} = \alpha x_k (1 - x_k) = g(x_k)$$
: discrete dynamic equation

Steady state solutions:
$$x_s = 0$$
 and $\frac{\alpha - 1}{\alpha}$

- Predicted non-zero solutions α = 2.95, x_s = 0.6610; α = 3.20, x_s = 0.6875 for four cases: α = 3.50, α = 0.7143; α = 3.75, α = 0.7333

- Transient response results for four cases:

(a) a=2.95:

Asymptotically stable behavior

(b) a=3.20:

Periodic behavior (2-period) (oscillation between 0.513 and 0.800)

(c) a=3.50:

Periodic behavior (4-period) (oscillation between 0.383, 0.827, 0.501, and 0.875)

(d) a=3.75:

Chaotic behavior
Highly sensitive to initial conditions

3. Cobweb Diagrams

(a) a=2.95:

Converge to the steady-state

 $(x_s = 0.6610)$

(c) a=3.50:

(4-period)

(b) a=3.20:

(2-period)

(d) a=3.75:

(chaos)

4. Bifurcation and Orbit Diagrams

- Single steady-state (α <3)
- Bifurcation to two solutions occurs at α =3 (period-2)
- New bifurcation occurs at α =3.44949 (period-4), period-8 at α =3.54409, period-16 at α =3.564407, period-32 at α =3.568759, period-64 at α =3.569692, chaos at α =3.56995...

- Period-3 behavior at α =3.83

5. Stability of Steady-State Solutions

- **Definition:** Let x^* represent the fixed-point solution of $x^*=g(x^*)$ or $g(x^*)-x^*=0$

Theorem: x^* is a stable solution of $x^*=g(x^*)$, if $\left|\frac{\partial g}{\partial x}\right|<1$ when evaluated at x^* .

(For the derivation of this theorem, see the previous notes explaining the fixed point iteration scheme.)

- Stability results for four cases

Case	α	X *	lg'(x*)l	condition	X*	lg'(x*)l	condition
1	2.95	0	2.95	Unstable	0.6610	0.9499	Stable
2	3.20	0	3.20	Unstable	0.6875	1.2000	Unstable
3	3.50	0	3.50	Unstable	0.7143	1.5000	Unstable
4	3.75	0	3.75	Unstable	0.7333	1.7500	Unstable

- Stability of x_0^* (x_s =0) as a function of a

 $|g'(x_0^*)| = |\alpha| \rightarrow x_0^*$ is stable for $\alpha < 1$ (no physical meaning for negative α)

- Stability of x_1^* (x_s = (a-1)/ a) as a function of a

$$\left| g'(x_0^*) \right| = \left| -\alpha + 2 \right| \rightarrow x_1^* \text{ is stable for } 1 < \alpha < 3$$

- Bifurcation diagram

(Transcritical bifurcation in next chapter)

- Response of the system

g'	Stability	X*
< -1	unstable	oscillatory
-1 < g' < 0	stable	oscillatory
0 < g' < 1	stable	monotonic
>1	unstable	monotonic

- Feigenbaum's number:
$$\lim_{i\to\infty}\frac{\alpha_i-\alpha_{i-1}}{\alpha_{i+1}-\alpha_i}=4.669196223$$