The Stability Analysis of ODEs
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1. A nonmathematical introduction to stability analysis

M

Figure: Bending of a board

e Bending of a board:

-- Quantitative change:
deform within elastic regime(stiffness: K) of board when small A s applied.
return to original shape of board when the perturbation in A s removed.
-- Qualitative change (=irreversible change):
abrupt changes when load A Ao
-- A K: control parameters or design parameter

- Practical research approach: find parameters to control the state of a system



@ Some pairs of verbs representing quantitative and qualitative changes

bend break

incline tilt over

stretch tear

inflate burst

stationary motion (or oscillatory)

unstable (tiny perturbations may
stable
trigger drastic changes)

e Various kinds of qualitative changes
-- Steps in qualitative changes: stationary state, regular motion, irregular motion

(regular — irregular: related to turbulence or chaos)

stable <> unstable
symmetric <> asymmetric
stationary <> periodic (regular) motion
regular < irregular

order < chaos

Table: Examples of parameters

Phenomenon Controlled by a typical parameter
Bending of a board Load

Vibration of an engine Frequency of imbalance
Combustion Temperatures

Nerve impulse Generating potential

Superheating Strength of external magnetic field
Oscillation of an airfoil Speed of plane relative to air
Climatic changes Solar radiation
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Figure: Velocity of a combustion front (a) stationary (b) wavy
(c) wavy, reqular (d) irregular (chaotic).



2. Stability analysis of lumped paramter systems (ODEs)

2.1. Lumped parameter systems (ODEs)

. dx
%= = %0

- dx,
Xll - dt - fn(Xl, ,Xn, t)
L= dx _
—  vector form: X = it = f(x,t)

2.2. Definition of stability
Autonomous ODE: x = f(x)
steady state: () = f(x.)

e The stationary solution xs is said to be stable if the response to a small perturbation
remains small as the time approaches infinity. Otherwise the stationary solution is
called unstable (the deviation grows).

(unstable equilibrium is source and is an example for a repellor)
-- The system is stable with respect to the region S(x)=0 if x(t) remains within the
region enclosed by S(x)=0 for all time 0 < t< oo
A system is considered stable with respect to a region so long as the transient
never leaves that region, even though the system may never return to the steady

state. = Practical stability
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Figure: Movement of a point x(t) in a region of phase space bounded by enclosed surface S(x)=0.



-- A necessary and sufficient condition for stability of this system with respect to the
region S(x)=0 is

n - f(x)<0 everywhere on S(x) =0

® A stationary solution xs is said to be asymptotically stable if the response to a small
perturbation approaches zero as the time approaches infinity

(asymptotically state equilibrium is sink and is an example for an aftractor)
x(t)—x, att— oo

-- The system is asymptotically stable with respect to the family of regions S(x,c) =0 if
when x(t) lies in a region enclosed by S(x,cm)=0, then x(t+4 A4>0, lies in a

region enclosed by S(x, ¢n) =0, ¢cn <cm.

X2

Figure: Asymptotic stability.

-- A necessary and sufficient condition for asymptotic stability of system with respect
to the family of regions S(x,c) =0 is
n + f < 0 everywhere on S(x,c)=0, ¢ < co

(ceo: limiting region of asymptotic stability)

Ex.) Simple case: y = Ay
- solution: y(t) =exp (4 , equilibrium: y;=0

- ys is stable for A < 0, asymptotically stable for A<0, and unstable for A>0

-- use the term "stable" in the sense "asymptotically stable"

@ Above definitions for stability are local in nature.
An equilibrium may be stable for a small perturbation but unstable for a large

perturbation.



Ex) v=vy(y’—dad), y0)=z

the closed-form solution: y=0 for z=0

vit) = (¢ 2+ (z 2= a Dexp (2a%)) V2 for z=

for |z] > |a . solutions diverge.

the domain of attraction (|z|<|a@ ) of the stable equilibrium y.=0 is bounded

by two unstable equilibria y=+

wcb)
/\ @
o | @

although locally stable, y=0 is globally unstable when "large" perturbations.

Stable
Barrier Barrier
(@) Astate stable with respect to
Metastable minor perturbations.
Unstable
Barrier
(b) The state in (&) with the right barrier
removed. This state is unstable with

Neutral respect to perturbations which move

the ball to the right.

Figure: Stability of a ball.

— Difficult to obtain the global stable results because systems are so complicated.

Importance of linear stability analysis - provide insight into what happens "close"

to an equilibrium.



2.3. Linear stability analysis
@ Procedure to derive the eigenvalue problems
-- Consider following ODEs
x; = f1(x1,x5), Xy = fy(x, X,)
-- Steady state solutions: f,(X,, Xo) = fo(X e, Xo) =0
-- Talyor series expansion of f; to linearize above Eq.

of, of,

)-(l = fl(XlS’ XZS) + (_axl )S(Xl _Xls) + (_3)(2 )S(Xz _XZS) + h.o.t.

-- Define deviation variables: h; =x; — x,, hy =Xy — Xy

-- The linearized system in vector notation (linear homogeneous eq.): |h = f{h

[ of] ofy)
where Jacobian matrix, f5 = 0x; 0%y

L ofy  of |

| 2tz 02

\ 0Xy 0%,

-- Insert the ansatz (hypothesis), h(t) = e “w
(¢ eigenvalues, w: eigenvectors)

(The only steady state is at h=0, the solutions will have the above form.)

-- Convert to eigenvalue problem, (f5— xI)w = 0

-- 1, o are roots of the characteristic eq., det( f;— #l) = ()

# The eigenvalues of the Jacobian matrix evaluated at an equilibrium point determine

the dynamics behavior in the neighborhood of the equilibrium

= Stability to infinitesimal disturbances (or perturbations)

= Liapunov’s first method: Use of the linecarized equations to study behavior of a
nonlinear system
Ex.) Find all fixed points for % = x”—1 and classify their stability

Ex.) Determine the stability of the fixed points for x = sinx

Ex.) Determine the stability for (a) x = —x’ (b) x =x" () x=x* (d) X =0



Ex.) Duffing eq. (without external forcing)
- consider the 2nd-order ODE

utu—u+u’=0
-lety,=u,y,=u
3}1 = Vo= f1(Y1 s Yz); 3}2 = V- Y:% — Vo= fz(Y1 ’ Yz)
- stationary points: (0,0), (1,0), (-1,0)
0 1

——

(
; e fS = |
Jacobian matrix: £} |
\

1-3% —1

(a) (0,0), characteristic eq.: 0=/’+x ., root: -% (—1+V5)

(b) (+ 0), characteristic eq.: 0=g’+x 2, root: -% (—1+V—17)

e Types of qualitative behavior of trajectories close to an equilibrium
(a) Nodes: fu, o real, pn+ 2> 0, ;u# 2
7 1 > 0: unstable node
(b) Saddle: yu, o real, pn+ 2 <0
always unstable
(c) Foci: 4, p» complex conjugate with nonzero real part, ui=a¢ S w=a 8

a a > 0: unstable focus

Figure: Stable node Saddle Focus



Figure: Phase plane of the Duffing equation.

e Degenerate cases; parameter dependence
m=n (a special node)
1+ 2=0 (require nonlinear terms)

2 = + 1 ‘a center of concentric cycles)

Definition: The equilibrium is called hyperbolic or nondegenerate when the Jacobian
{3 has no eigenvalue with zero real part. The exceptional cases s + =0

and u,0 = = 3 are called nonhyperbolic or degenerate.

-- Consider x = f(x, A),
Upon varying the parameter A the position and qualitative features of a stationary
point can vary. In other words, qualitative changes such as a loss of stability are

encountered when a degenerate case is passed.

stable focus center ungstable focus

a(A)<0 ()=0

Figure: A focus changes its stability for A o

e Generalizations: the principle of linear stability

Theorem: Suppose f(x) is two continuously differentiable and f(x.)=0. The real
parts of the eigenvalues g (j=1,--- 1) of the Jacobian evaluated at the
stationary solution x, determine stability in the following way;
(@) Re (1) < 0 for all j implies asymptotic stability

(b) Re (z4) > 0 for one (or more) k implies instability



2.4. Applications of linear stability analysis

-- Remind the previous results for stability analysis

Introduction

(a) 2nd-order polynomials: A%+ a;A+a, = 0 (root: A, A)

For the roots of above equation to have negative real parts, it is necessary and
sufficient that a; and a» be positive.

(bl) Higher order polynomials: a,A"+a;A" '+ - +a,_A+a,=0
- use the Routh-Hurwitz criterion

- form the n determinants

la, a3 as 0
Ea a, a, 0 !
= i0 a; a3 - 0§, =
i =i I 43 i (i=1--1), a=0 k>n
10 ap a; - Ug( ) A
iU 0 a = 0]
| a; |

i
- the n roots of above equation will have negative real parts if and only if 4>0,
i=12,

(b2) Routh stability criterion - determining stability without calculating eigenvalues
a,A"+a, A" '+ +adta, =0
- Routh array

1 an al‘t-z al‘t-4
2 dn-1 An-3 An-5
3 by b2 b3
4 C C2 C3
n+1
b, = _all—lall—Z_anan—S b An—1dp—4 apd,_5
1 - a td 2 - a
n—1 n—1
C, = _blall—:}_an—lbz Co = _a|1—5bl_a|1—lb3
1 b1 ’ 2 b1

- A necessary and sufficient condition for all roots of the characteristic polynomial
to have negative real part is that all of the coefficients of the polynomial are

positive and all of the elements in the left column of Routh array are positive.

- 10 -



Application 1: CFSTR (continuous flow stirred tank reactor)

Volume V

Reactants

Volumetric flow
rate g

Products

Coolant

Figure: Schematic diagram of a CFSTR.

e Governing equations (mass & energy balance)

-- Assume the single liquid phase chemical reaction, A — products

V-g% = qlcf—c] —Vr(c,T)

pcDV-(é}; = oc,alT;—T]+[—4H]Vr(c, T) — Ua[T — T 4]

r(c, T) = kce ~F/RT

Notations:

t: time, V: volume, q: volumetric flow rate, c: conc. of reactant A, cg feed conc.,
o density, c,: heat capacity, T: temp., Ty feed temp., Te: coolant feed temp.,
A [: heat of reaction, U: overall heat transfer coeff., a: area available for heat

transfer, K: constant, E: activation energy, R: gas constant

e Dimensionless governing equations

-- Dimensionless variables:

_ c _ T _ kV _ _Ua
XT VT 4T g 0 oqc,

_ _ —dHce __E._ .t _ 1+ T4/ Ty
B= et 1481 > TR, " 'T vV - P77 146

(B s positive for an exothermic reaction)

dx S =7rly
dt 1 —x —axe
il ey ramen

(for an adiabatic reactor, heat transfer area goes to zero, §—0, ¢—1)

- 11 -



e Steady state CFSTR

0=1—x,—axe — .

0= qﬁ—ys-f-a,@xse_ﬁ“
- Bxg=B+d—vy, O=x=1 ¢=<y:=<¢ 8

- }11, [vi—¢]=F(v,), F(v) =[B+s—yle ™"

This system have multiple steady state solutions (result of uniqueness condition)

e Stability to infinitesimal perturbations: CFSTR
Stability of CFSTR

dx
dt

V= [1+81(s— v + aBxe ™) = f,(x,y)

=1-—x—axe " =1f(x,y)

-- Components of Jacobian matrix:

— 7y, _ ay
a,=—1—ae ", ap,=——"7 F(y,)
1 12 By s

ay=[1+8lage ™, ap=—[1+a+ -1 A7 Fy)

characteristic eq.: A*— [a;; + anlAd+ [a;3a9 — apay] = 0

-- For roots with negative real parts,

apnan - apan = [1 +6][1 —aF (v)]> 0

ap +an = —2 + aF’ (ys) - 3[1 - _32}/ F(YC;)] <0

— aF'(y.) <1
aF (v) < 2+ 5[1 - a7 F(ys)]
Vs
- necessary and sufficient conditions for a steady state to be stable to infinitesimal

perturbations

-- Marginal stability (=neutral stability)

L _ 2+ 001~ (a7/yHF (v)
‘ F (v,)

- 12 -



Application 2: Anisotropic fluid

e Incompressible Newtonian fluid: r; + pd; = 2xd; (i,j=1,2,3)

_ _]_ _avi _3VJ
where d;; = 2| ax, + 9%

p=isotropic pressure, v=velocity vector, x=coordinate location,

], 0 = li=jor Ogisy

7=extra-stress tensor, g viscosity

e Simple shear flow

X3 — vo=I"4
X'] , ,

X2 Figure: Simple shear flow

vi=v3=0, vo=I"1 (I" shear rate)

the only nonzero stresses are the shear stresses: 7, = 1y = pl’

e Polymer solutions, polymer melts, fiber suspensions, and liquid crystals, because of
the internal structure in the fluid, do not follow this simple relation. A class of

structural theories has been developed which relate the stress to the local structure.

-- In the simplest of these theories (developed by ]. L. Ericksen), the structure in the

liquid is described by the magnitude and orientation of a vector, n.

3 3
-- rij + ];)5,] = ﬂlr F)2.=‘1dmnrns]I‘linj + Z#Zdij + 2ﬂ3 kz:l [diknknj + nidjknk]

on; 5. on; 1 &,
ot +k=lvk 0X . 2 kzll

_aVi _ _3Vk ]
0X . ox; |Mx

3 3
= [31 + 6, le‘ldrsnrns]ni + B3 kz:ldiknk

-- In simple shear flow, shear stress & orientation vector equations simplify to

= (#nind + py + p3[nf +n3)) I

dn

-dtl = [Bl + Bzfnlnz]nl + _% [63_ ].]rnz
dn

-dtz = [ﬁl + ﬁzrnlnz]n2+ _% [63+ ].]fnl
dn

_dt3 = [ﬁl + ﬁzfnlnz]ns

where /i, [, 5 11, 10 13 are constants and n is assumed to independent spatially.

e The possibility of multiple solutions: see next copies
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Application 3: Feedback control

o x=f(x)+hb(x)u
-- w: a scalar control variable which regulate performance in the neighborhood of the

steady state and vanishes for x=x. (u =k - [x — x.])

- x=1f(x)+bx)k - [x— x(]
-- For small perturbations, following equation with deviation variables is written

h=1[vi(xy+bk] - h+O0)

Ex) x" =g(x,x",x"") +bu (u=kx; : proportional to the offset in x)

X1 = Xy )E2=X3; )E3=g(i)_+bkxl

[0 1 0
- Jacobian matrix = vf = | 0 0 1
\ay ap ag'

- The eigenvalue eq. for A+bk is

| -4 1 0 |
i 0 _)K ]. i = _/13+833/12+832/1+ [831 +bk] =0

|a31+bk 832 833_/1
- For eigenvalues with negative real parts,
ax < 0, a3 <0, az + bk <0, azzaxn + an > -bk

- Marginal stability: - bk, = as; a3 + as

® Remarks about linear stability analysis

(a) No information is obtained about how large a perturbation can be

tolerated
before instability will occur.

(b) Only information about asymptotic stability is obtained

- 14 -



Application 4: Dynamical behavior of a cascade of two CSTR with recylcle
(1st order exothermic reaction)

g _ _ X3 |_
" =(1-A)x, —x; +al Xl)eXp[1+x3/yj_o

dx, X
—2=x,—-X,+a(l-X,)exp| —4—|=0
it =X, +a(l-x,) p(1+x4/}/j

dx X

_dt3 =(1-A)x, — X5 +aB(l-x,) eX|C{1+ X33 /yj ~By(Xs—04)=0
dX4 v . X4 _ — =

o % X, +oB(l xz)exp(1+x4/yJ Bo(X,—6.,)=0

Dependence of the steady-state solution on the parameter
Parameter: v=1000, B=22,B,=8,=2, A=104=0,=0

(Blue line: stable steady state, dotted red line: unstable steady state)
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