Chapter 10

A Review

10.1 Introductory Remarks

The fundamental concepts of computational fluid dynamics were introduced in the
previous chapters. Various aspects of numerical schemes were explored with regard to
simple partial differential equations. In all cases up to Chapter 8, the investigations
were limited to a single equation. In the upcoming chapters the concepts are extended
to systems of equations. Before proceeding further, however, it is beneficial to review
and summarize the content of the previous chapters.

10.2 Classification of Partial Differential Equations

Partial differential equations (PDEs) can be classified into different categories,
where within each category they may be classified further into subcategories. The
numerical procedure used to solve a partial differential equation very much depends
on the classification of the governing equation. A brief review of the classification of
partial differential equations is provided in the following subsections.

10.2.1 Linear and Nonlinear PDEs

(a) Linear PDE: There is no product of the dependent variable and/or product of
its derivatives within the equation. :

(b) Noulinear PDE: The equation contains a product of the dependent variable
and/or a product of the derivatives.
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10.2.2 Classification Based on Characteristics

(I) First-order PDE: Almost all first-order PDEs have real characteristics, and
therefore behave much like hyperbolic equations of second order.

(T1T) Second-order PDE: A second-order PDE in two independent variables, z and
¥, may be expressed in a general form as

AB:::2 dzdy oy? 8 ay

The equation is classified according to the expression (B2 —4AC) as follows :

< 0 — elliptic equation
(32 — 4AC) = 0 — parabolic equation
> 0 — hyperbolic equation

The following criteria may be stated with regard to each category defined above:

(a) Elliptic equations

o No real characteristic lines exist

e A disturbance propagates in all directions

e Domain of solution is a closed region

. Boundary‘conditions must be specified on the boundaries of the do-

main

(b) Parabolic equations

¢ Ouly one characteristic line exists

o A disturbance propagates along the characteristic line

¢ Domain of solution is an open region

¢ An initial condition and two boundary conditions are re@uirgd
(c¢) Hyperbolic equations

e Two characteristic lines exist

» A disturbance propagates along the characteristic lines

¢ Domain of solution is an open region

¢ Two initial conditions along with two boundary conditions are required

(IIT) System of First-Order PDEs

A system of first-order PDEs may be expressed in a vector form as

op 0P 0%
ot UG + B + ¥ =0 (10-2)
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" where the vector & contains the dependent variables. The system is classified
according to the eigenvalues of coefficient matrices {A] and [B]. If the eigenvalues
of matrix [A] are all real and distinct, the system is classified as hyperbolic in
t and z. If the eigenvalues of [A] are complex, the system is elliptic in ¢ and
z. Similarly, the system is classified with respect to the independent variables
t and y based on the eigenvalues of matrix [B].

For a steady equivalent of (10-2), given by
0% 8% |
99 ;%% L= 0-3
[A]6x+[ ]6y+!p 0 (10-3)

the classification is as follows:

< 0 — elliptic
H{ =0 — parabolic
> 0 — hyperbolic

where

H=R!~4PQ

and

P =14, @=|B|
For a system composed of two equations, R is given by

a1 Q4

by by

az az

k= by by

where

| % 2 _ | Ga a4
[A] = { b by ] and [B]= [ by by

{IV) System of Second-Order PDEs

The classification of a system of second-order PDEs is facilitated if the second-
order PDEs are reduced to their equivalent first-order PDEs. Subsequently, the
system is classified as previously seen. The procedure could be cumbersome.

For specific details and examples, Section 1.9 should be reviewed.

10.3 Boundary Conditions

A set of specific information with regard to the dependent variable and/or its
derivative must be specified along the boundaries of the domain. This set of infor-
mation is known as the boundary condition and may be categorized as follows.
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(2) The Dirichlet boundary condition: The value of the dependent variable along
the boundary is specified.

(b) The Neumann boundary condition: The normal gradient of the dependent vari-
able along the boundary is specified.

(¢) The Mixed boundary condition: A combination of the Dirichlet and the Neu-
mann type boundary conditions is specified.

10.4 Finite Difference Equations

The partial derivatives appearing in the differential equations are replaced by
approximate algebraic expressions to provide an equivalent algebraic equation known
as the finite difference equalion. Subsequently, the finite difference equation is solved
within a domain which has been discretized into equally spaced grids. Finite differ-
ence equations commonly used for the solution of parabolic, elliptic, and hyperbolic
equations are reviewed in this section. '

10.4.1 Parabolic Equations

Various finite difference formulations are reviewed for the one-dimensional parabolic
equations initially and, subsequently, extended to multi-dimensional problems.

10.4.1.1 One-Space Dimension

‘The simple diffusion equation is used in this section to review varibus finite
difference equations. The model equation is given by

ou &*u

ot Oz?
where « is assumed to be a constant and hence a linear equation. To facilitate the
review process, various aspects of each finite difference formulation such as the order of
accuracy, amplification factor, stability requirement, and the corresponding modified

equation are summarized. In the formulations to follow, the diffusion number is
designated by d, which is defined by

At

4=y
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Scheme:
Formulation:

Order:

Amplification Factor:
Stability Requirement:

Modified Equation:

Special Considerations:

FTCS explicit

uptt = up +d (ufy, — 2u] +ul,)
0 [(a1), (Az)’]
G =1+ 2d(cosf —1)

=

<

Scheme:
Formulation:
Order:

Amplification Factor:

Stability Requirement:

Modified Equation:

Special Considerations:

DuFort-Frankel explicit

1—2d 2d
ntl n—l u? n
Y +1+2d(-'+1+“‘-1)

0 [(At)z, (Az)?, (%) ]

- 1 .9 %

U,

Unconditionally stable

ou _ 0 AtV gty

bz = a1t [ o(as’) - (Az)]é?
1 3 2, 1 4

+[_ (A1) —1—3600:(A z)

+2a" (A)]%

Requires two sets of data to proceed
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Scheme:

Formulation:

Order:

Amplification Factor:

Stability Requirement:

Modified Equation:

Special Considerations:

Laasonen implicit

dultl — (1 + 2d)u?* 4 dul | = u?

O [(At), (Az)]

1
"~ 14 2d(1 ~ Cosé)
Unconditionally stable

%’5 = ag—-’.ﬁ- + [ o?(At) + — a(A:r)z] %;—'ﬁ-

+ [iaﬁ(m*)2 + --2-042(At) (Awf

i
360“(‘&“’) ] 05t

Requires solution of a tridiagonal system

Scheme:

Formulation:

Order:

Amplification Factor:
Stability Requirement:

Modified Equation:

Special Considerations:

Crank-Nicolson implicit

1 1
§d”?-:-11 I+t + 2d uit! = "2“ i+1

(@~ 1)p - zdu,

O [(at?, (Az)?]

_ 1 —d(1 - Cosb)
" 14d(1 = Cosh)
Unconditionally stable

4
B = ol + [fpetaer] 24

[ *(At)? -!-%a(ﬁm')‘]%fc%;l'

Requires solution of a tridiagonal system




A Review

10.4.1.2 Multi-Space Dimensions

The review of multi-dimensional problems will be limited to two-space dimensions.
The procedure to three-space dimensions is similar. However, it is cautioned that
the extension may not be trivial, and certain formulations which may have been
unconditionally stable in two-space dimensions may become only conditionally stable

in three-space dimensions. The model equation used is the diffusion equation in
two-space dimensions given by

Ou _ (Ou O
ot ~ ‘oz T G2

Scheme: FTCS explicit

Formulation: ultt = ul; + da(ufyy; - 2u}; +ully ;) + 4, ( Ui j+1
~2uf; + uf;_y)
Order: 0 E(At), (Az)?, (Ay)zl

| 1
Stability Requirement: (d. +d,) < 3

Scheme: ADI
. 1 n+2 : n+% 1 114-.%
Formulation: §d U+ (1 +dg)u ;2 — Edz Ui
1 ‘ 1N
(gdy) uliy + (1 —dy)ul; + (§dy) U -1
1 n+1 ntl 1 d n+tl
and (-idy) u i+ (1+d )u 7% “:‘.j+1
I n n 1- n
( ) 1-:_123"*'(1-d ) :j2 + (zd) lj-lzj'

Order: o [(At , (Aﬂ?) , (Ay) ]

. . . [1 — d.(1— Cosb,)] [I —d,(1 — Cosb,)]
Amplification Factor: G = L+ (1= Cosb)) 1T d,(1 = Cosﬂ,,)_]
Stability Requirement: Unconditionally stable
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Scheme: Fractional step
' ntd 1
Formulation: dxu?:'l’J (1+ 2d¢)u,-:-'2 + dzu?jlfj

= —dIU?+1'j + (2dz — ) d ur

i—1,j

and dyultly — (L4 2d,u?f* +d u:"j'll
—d “?jfl (2d 1) dyu :_-Tzl
Order: 0 [(At)z, (Az)?, (A'y)2]

Stability Requirement: Unconditionally stable

10.4.2 Elliptic Equations

The model equation utilized to represent various finite difference equations is the
Poisson equation expressed in two-space dimensions given by

Pu | Pu

oy?

Only iterative schemes which are usually the most efficient schemes to solve elliptic
equations are reviewed in this section. In the formulations to follow, the ratio of

stepsizes is designated by 8, i.e., 8 = E
Ay’
Scheme: Point Gauss-Seidel (PGS)
. 1
Formulation: ubtt = ST+ ukq; + uit .+ 8 ( U 54+ ukj’fl)]
Order: : o [(Am) , (Ay) ]
Scheme: ‘Line Gauss-Seidel (LGS)
Formulation:
(z direction) wf — 201+ ARt +ulfl; = —puly,, — Flu M
Order: 0 [(Ax)z‘, (Ay)2]
. . N TR du
Modified Equation: Ba: + 8 Y= —-— A )2 3512 y)za—y-; +..
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Scheme:

Formulation:

Order:

Point Successive Over-Relaxation (PSOR)

k k41

S d
uiy —(l“w)u?,ﬂm[ iy T U

‘IJ

‘ng (u1 4 + ufjﬂ])]

O[(az)*, (Ay)Y)

Special Considerations:  The range of relaxation parameter is 1 <w < 2

Scheme:

Formulation:
(z direction)

Line Successive Over-Relaxation (LSOR)

k41 k41 k41
wu,fl,_, (1+ﬁ2)u ¥ +wu‘j_‘1‘1

—(1 —w) 201 + )] ul; — wp? (uk; s +ubil)

Special Considerations: The range of relaxation parameter is 1 < w < 2

Scheme: ADI
1
Formulation: ufff,, 2(1 +ﬁ2) U;; 3 + f:m —5? ( Ui i+l +ukj-1)
k+1
and S*u fj_ll 21 + ﬁz)ukﬂ BPu fﬁl = —Up; — uffll,j
Scheme: ADI with relaxation parameter
1
Formulation: wuf+fj 2(1 + B)uy t+E + wuf:?,j
ktd
(1 -w) R+ Aty — 0B (ks + il
and  wplufll 2014 ﬁz)um +w Bu f}"ix
k+1 k+
= (1-w) 2O+l - (bl + i)
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10.4.3 Hyperbolic Equations

Investigation of various finite difference equations is easily accomplished with
regard to linear hyperbolic equations. Subsequently, the conclusions may be extended
to nonlinear hyperbolic equations. With that in mind, the review of the formulations
is performed sequentially in two parts.

10.4.3.1 Linear Equations

The wave equation given by

Ou Ou
§=—a5£, a>0

1s used to review linear hyperbolic equations. Note that the speed of sound, q, in
the equation above is assumed to be a constant and, hence, a linear equation. The
parameter, a4%, defined as the Courant number and designated by ¢, will be used in
the formulations to follow.

Scheme: First upwind differencing
Formulation: uPtl = u? — ¢ (u;‘ — u?_l)
Order: | O [(AY), (Az))

Amplification Factor: G=1-—¢(l ~Cosh) —i(cSin 8)
Stability Requirement: c<1

Modified Equation: %‘ = ——ag—% + %at’.\x(l - c)%

L neyaet - se s )2
—Ea(Am) (2¢ -3c+l)a$3 +...

Scheme: Lax
- n 1 n n 1 n n
Formulation: uptl = 3 ( Uiy + u,-_._l) — 3¢ (u,-+1 - u‘-_l)
Az?)
Order: (Cy)
rder O[(At), a0 ]

Amplification Factor: G = Cos 8 — i(cSin f)
Stability Requirement: c<1

: fon: au — : i @
Modified Equation: a-a—+ a(Aa:) (c - ) 527

Pu
+ Ea(Am)z(l )a 3 +.
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Scheme:

Formulation:

Order:

Amplification Factor:

Stability Requirement:

Modified Equation:

Special Considerations:

Midpoint Leapfrog

uftt =4t ¢ (u?_H - u?_l)

O [(Aad?, (Az)?]

G = +[1 - Sin?6]" - i(cSin )
c<1

Fu

ou _ 8 1 2 2y Y ©
-a%ﬂ-—cza%—-ﬁa(Aa:) (1——c) 53T

Requires two sets of data for the solution

Amplification Factor:

Stability Requirement:

Modified Equation:

to proceed
- Scheme: Lax-Wendroff
. 7" 7 1 n
Formulation: uftl = o — 3¢ (-u,- 1 — u?_l)
1 2 n | n n
+ 5¢ (‘-‘i+1 — 2y} + U£-1)
Order: 0 [(at?, (Az)?|

G=1-¢*(1—Cosf) —i(cSinb)
c<1
du Fu

L a0
—ga(Ax) C(l_c-)&v“ +...

! .
—6{ = —-ag% — EG(A:E)Z (1 — Cz) @ |
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Scheme: BTCS implicit
. 1 n+1 n+1l 1 na+l __ n
Formulation: S T Y 2cu,,|_1 = —uj
Order: oAy, (Az)’]
| . . 1 —i(cSinf)
Ammplification Factor: G= T+ (Sn?0)
Stability Requirement: None
Modified Equation: Ou — _oQU 4 uaz(At)a
ot B— 8z°
[l ] B+
Scheme: Crank-Nicolson
1
Formulation: ic ulh —uft! — 4cu1‘f11 =ul — ° (u}"+1 - u?_I)
Order: 0 [(At)2 , (Aa:)g]
. . 1 —0.5¢(c Sin 6)
Amplification Fac‘:tor. G = 05 (c5md)
Stability Requirement: None

Modified Equation:

Qu . _oQu _ —a(A) (1+—c)-gs—

Scheme;
Formulation:

and
Order:

Stability Requirement:

Lax-Wendroff
u:f =3 (”1-1-1 + u:l) - %C (u?ﬂ - un’)
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Scheme: ' MacCormack
Formulation: uf = ul —c (u}‘+1 - u?)
and WPt = Sl e (uf — )]
Order: - 0[(an?, (Az)
Stability Requirement: c<l1

10.4.3.2 Nonlinear Equations

The inviscid Burgers equation is used to review various schemes for the solution
of hyperbolic equations. Recall that the model equation is given by

o ou__oE
ot~ oz bz

where £ = % . Now, the Courant number is defined as ¢ = u4L

Az’
Scheme: Lax
. ' 1 At
Formulation: ult! = % (u}'+1 + u?_l) 5% ( — Bl 1)
Order: oi(at), (Az)?
Amplification Factor: G = Cosf —i(cSinf)
o . At
Stability Requirement: ]umax ‘ <1
Scheme: Lax-Wendroff
1 At 1 7 A\
: . n+l _ . on n N
Formulation: Ut = =y e ( 1 E"_l) 1 (Aa:)

(w2 +w2) (B = B7) ~ (ur + i) (87 - B2
Amplification Factor: G =1-2¢*(1 - Cos ) — 2i(cSinf)

Stability Requirement: 'um -gf—
T

<1
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Scheme: ' MacCormack
| - L3 ;8 At n n
Formulation: uj = - ( 1 — E,—)
1 At
ndl __ noy . * -
and utt = 5 [ue U - A7 (Ei - E:’—l)]
Order: O[(At)?, (Az)T]

10.5 Stability Analysis

The error introduced in the finite difference equations due to the truncation of the
higher order terms in the Taylor series expansion may grow unbounded, producing
an unstable solution. The control of errors within the solution is of primary concern
for any numerical scheme. To establish the necessary requirements, a stability anal-
ysis must be performed. Among various methods available for stability analysis are:
(1) The discrete perturbation stability analysis, (2) The vor Neumann {or Fourier)
stability analysis, and (3) The matrix method. It should be noted that direct stabil-
ity analysis of a nonlinear, multi-dimensional, coupled system of equations is usually
cumbersome. In most cases, expressions are proposed which are based on the sta-
bility analysis of simple model equations complimented and reinforced by numerical
experimentation. Thus, one encounters the suggested stability requirement for a par-
ticular scheme which resembles those of simple model equations, but includes some
modifications based on numerical experimentations. '

To review the limitations and conclusions provided from the von Neumann stabil-
ity analysis, the summary stated in Chapter 4 is repeated at this point.

1. The von Neumann stability analysis can be applied to linear equations only.

9 The influence of the boundary conditions on the stability of the solution is not
included.

3. For a scalar PDE which is approximated by a two-level FDE, the mathematical
requirement is imposed on the amplification factor G as follows:
(a) if G is real, then |G| <1
(b) if G is complex, then [G|? < 1, where |G|* = GG
4. For a scalar PDE which is approximated by a three-level FDE, the amplification

factor js a matrix. In this case, the requirement is imposed on the eigenvalues
of G as follows:
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(a) if X is real, then |\ < 1
(b) if A is complex, then [A? < 1

5. The method can be easily extended to multi-dimensional problems.

6. The procedure can be used for stability analysis of a system of linear PDEs. The
requirement is imposed on the largest eigenvalue of the amplification matrix.

7. Benchmark values for the stability of unsteady one-dimensional problems may
be established as follows:

(a) For most explicit formulations:

I. Courant number, ¢<1

II. Diffusion number, d < %
III. Cell Reynolds number, Re, < (2/c)

(b) For implicit formulation, most are unconditionally stable.

8. For multi-dimensional problems with equal grid spacing in all spatial direc-
tions, the stated benchmark values are adjusted usually by dividing them by
the number of spatial dimensions.

9. On occasions where the amplification factor is a difficult expression to analyze,
graphical solution along with some numerical experimentation will facilitate the
analysis.

10.6 Error Analysis

The truncation of terms in the approximation of a partial derivative could begin
from an odd-order or an even-order derivative term. For example, one may approxi-
mate a first-order derivative by either

Ou  uy—u;  (Az) 0%u  (Az)? 3w

- 10-4
P TR = T I - (10-4)

or

@ _ Uig1 — Ui + (AI)z 83u
8z 2Ax 3 a8

‘The approximation (10-4) may be truncated and expressed as

+oo (10-5)

Ou Ui Y
8z Az +0(Aq)
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where the dominant (or leading) error term includes a second-order derivative, i.e.,
even. The second expression given by (10-5) is written as

du Uil — Ui

ou _ 2
oz 2Az +0(A2)

where the dominant error term now includes an odd derivative. The behavior of error
associated with finite difference equations is strongly influenced by the dominant
error term. To clarify the types of error introduced to the finite difference equations,
a convective dominated equation, where physical viscosity is absent, will be used.

Thus, consider the wave equation and two different finite difference equations given
by

ufth = o} —o(uf —ull,) \ (10-6)

and

uft! = o™t — c{ufy — uly) (10-7)

The FDEs are recognized as the first upwind differencing scheme and the midpoint
leapfrog method. To identify the dominant error term of an FDE, the modified
equation must be investigated. The corresponding modified equations for the FDEs
given by (10-8) and (10-7) are, respectively:

o ou 1 1 &
5 = —age + za(Az)(1 - )--— - ge(8a) (27 —3c+1) Z5 + ... (10-8)
and 8 ou 1 &
a_;‘ - —aa—z + soBe) (¢~ 1) = . (10-9)

Observe that the dominant error terms in Equations (10-8) and (10-9) include second-
order derivative and third-order derivative, respectively. Recall that, from a physical
point of view, a second-order derivative is associated with diffusion. Indeed, the co-
efficient of the second-order derivative in Equation (10-8) is known as the numerical
viscosity. Thus, it is obvious that the error associated with Equation (10-8) is dissi-
pative and, hence, it is called dissipation error. On the other hand, an FDE scheme,
where its corresponding modified equation possesses an odd-order derivative as the
lead term in error, is associated with oscillations within the solution. Such an error
is called dispersion error.

10.7 Grid Generation-Structured Grids

Finite difference equations are most efficiently solved in a rectangular domain
(for 2-D applications and an equivalent hexahedral domain for 3-D applications) with
equal grid spacings. Unfortunately, the majority of physical domains encountered
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are nonrectangular ih shape. Thus, it is necessary to transform the nonrectangular
physical domain to a rectangular computational domain where grid points are dis-
tributed at equal spacings. It is also important to note that the transformation allows
the alignment of one of the coordinates along the body, thus facilitating the imple-
mentation of the boundary conditions. The objective of grid generation is then to
identify the location of the grid points in the computational domain and the location
of the corresponding grid points in the physical space. Furthermore, the metrics and
Jacobian of transformation which are required for the solution of flow equations are
computed within the grid generation routine.

Typically, grid generation schemes may be categorized as algebraic methods or
differential methods. In the latter case, the scheme is based on the solution of a set of
PDEs and may be subcategorized as either an elliptic, parabolic, or hyperbolic grid
generation. Either category of grid generation scheme should include the following
considerations.

1. A mapping which guarantees one-to-one correspondence ensuring grid lines of
the same family do not cross each other:

2. Smoothness of the grid distribution;
3. Orthogonality or near orthogonality of the grid lines;
4. Options for grid clustering.

A brief summary of the advantages and disadvantages of each method is provided
below.

1. Algebraic grids

The advantages of this category of grid generators are:

(a) They are very fast computationally;
(b) Metrics may be evaluated analytically, thus avoiding numerical €rrors;
() The ability to cluster grid points in different regions can be easily imple-
mented.
The disadvantages are:
(a) Discontinuities at a boundary may propagate into the interior region which
could lead to errors due to sudden changes in the metrics;

(b) Smoothness and skewness may be difficult to control.

2. Elliptic grids

The advantages of this class of grid generators are:
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(a) Will provide smooth grid point distribution, i.e., if a boundary discontinu-
ity point exists, it will be smoothed out in the interior domain;

(b) Numerous options for grid clustering and surface orthogonality are avail-

able;
(¢} Method can be extended to 3-D problems.

The disadvantages of the method are:
(a) Computation time is large (compared to algebraic methods or hyperbolic
grid generators);

(b) Specification of the forcing functions P and @ (or the constants used in -
these fungtions) is not easy;

(¢) Metrics must be computed numerically.

3. Hyperbolic grids

The advantages of hyperbolic grid generators are:

(a} The grid system is orthogonal in two dimensions;

{b) Since a marching scheme is used for the solution of the system, computa-
tionally they are much faster compared to elliptic systems;

(c¢) Grid line spacing may be controlled by the cell area or arc-length functions.
The disadvantages are:

(a) Boundary discontinuity may be propagated into the interior domain;

(b) Specifying the cell-area or arc-length functions must be handled carefully.
A bad selection of these functions easily leads to undesirable grid systems.

. Finally, the metrics and Jacobian of tranformation are given by the following
expressions.

1. Two dimensions

€z = Jyq
£ = —Jz,
M. = —JY¢
1y = Jag
where
1

TelYn — ey
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2. Three dimensions '
| o = Jynze — yezy)
&y = J(zezy — 392¢)
§: = J(zqye — Tcyy)
nz = J(ycze ~ yezc)
1y = J(zeze — T¢2¢)
N = J(2cye — zeye)
(o = J(yezn — ynZe)
(o = J(Tp2ze — Te2p)
(: — J(zeyn — To¥e)
b= —(zolo + Yoy +.2:€2)
M = —(Zr0z + Yoy + 2002)

(= _(-T-rgz + 'y'rCu + zTCz)
where

Az,y,2)  ze(yn2e —Yezn) — Tolveze — yeze) + Te(Yezn — ynze)

10.8 Transformation of the Equations From the
Physical Space to Computational Space

The partial derivatives expressed in the physical space are related to the partial
derivatives in the computational space by the following relations:

o fredondrod
g _ .0 0 i)
35—&534-%'5-64-&32'
%zfy%+ﬁya%+<yé%

a _, &8 0 J
ggg—fz‘az+nz35+€}3?

The Navier-Stokes equations in a flux vector form may be expressed in the physical

space by
oQ , 08 oF N

ot  dxr Oy Oz dz Oy 0z

can be transformed to the computational space and expressed by
0Q OF O0F &G _ dE, 08F, 068G
i T T T T

dG _8E, 0F, G,
== +



20 ' Chapter 10

where

5.9
©=7
B=(6Q+6E+6F +606)
F= -}(mQ +1:E +nyF +17:G)
T=~(6Q+GE+GF +0.0)

— 1
EU = j(‘szv + Eva + EzGu)

1
v = _('?.tEv + Tinv + nzGu)

%]
~

— 1
G, = "‘]‘(C:nEu + Cva + CzGu)

The inviscid and viscous Jacobian matrices which are produced in the process of
linearization of the equations are given in Chapter 11 for the Navier-Stokes, Thin-
Layer Navier-Stokes, Euler, and Parabolized Navier-Stokes equations.




