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1.1 Introduction

 Monte Carlo Method 
 Any method that uses random numbers 
 Random sampling the population 
 Application

• Science and engineering
• Management and finance 

 For given subject, various techniques and error analysis 
will be presented 

 Subject : evaluation of definite integral 
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1.1 Introduction

 Monte Carlo method can be used to compute integral of 
any dimension d (d-fold integrals)

 Error comparison of d-fold integrals 
 Simpson’s rule,…   
 Monte Carlo method 

Monte Carlo method WINS, when d >> 3 

dNE /1−∝
2/1−∝ NE purely statistical, 

not rely on the dimension !



1.2 Hit-or-Miss Method

 Evaluation of a definite integral

 Probability that a random point reside inside 
the area 

 N : Total number of points
 N’ : points that reside inside the region
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1.2 Hit-or-Miss Method
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Start

Set N : large integer

N’ = 0 

Choose a point x in [a,b]

Choose a point y in [0,h]

if [x,y] reside inside then N’ = N’+1

I  = (b-a) h (N’/N)

End

Loop
N times
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1.2 Hit-or-Miss Method

 Error Analysis of the Hit-or-Miss Method
 It is important to know how accurate the result of simulations are
 The rule of 3σ’s 

 Identifying Random Variable

 From central mean theorem ,      is normal variable in the limit of 
large N 
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1.2 Hit-or-Miss Method

 Sample Mean  : estimation of actual mean value (μ)

 Accuracy of simulation  the most probable error
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1.2 Hit-or-Miss Method

 Estimation of error 

 We do not know exact value of s , m 
 We can also estimate the variance and the mean value from 

samples …

N
σ6745.0

)(XV=σ


=

−
−

=
N

n
nx

N 1

22 )'(
1

1' μσ



1.2 Hit-or-Miss Method

 For present problem (evaluation of integral) exact answer  
(I) is known  estimation of error is, 
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1.3 Sample Mean Method

 ρ(x) is a continuous function in x and has a mean value ; 
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1.3 Sample Mean Method

 Error Analysis of Sample Mean Method 
 Identifying random variable

 Variance  
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1.3 Sample Mean Method

 If we know the exact answer, 
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1.3 Sample Mean Method
Start

Set N : large integer

s1 = 0, s2 = 0 

xn = (b-a) un + a 

yn = ρ(xn)

s1 = s1 + yn , s2 = s2 + yn
2

Estimate mean  μ’=s1/N
Estimate variance V’ = s2/N – μ’2

End

Loop
N times
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QUIZ

 Compare the error for the integral 

using HM and SM method 
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Example : Comparison of HM and SM

 Evaluate the integral 
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Example : Comparison of HM and SM

 Comparison of error 

 No of evaluation having the same error
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2.1 Variance Reduction 
Technique - Introduction

 Monte Carlo Method and Sampling Distribution
 Monte Carlo Method : Take values from random sample 
 From central limit theorem, 

 3s rule

 Most probable error

 Important characteristics

N/               22
σσμμ ==

9973.0)33( ≈−≤≤− σμσμ XP

N
Error σ6745.0±≈

NError /1∝ σ∝Error



2.1 Variance Reduction 
Technique - Introduction

 Reducing error 
 *100 samples reduces the error order of 10 
 Reducing variance  Variance Reduction Technique

 The value of variance is closely related to how samples are 
taken
 Unbiased sampling
 Biased sampling

• More points are taken in important parts of the population



2.2 Motivation of Variance 
Reduction Technique
 If we are using sample-mean Monte Carlo Method

 Variance depends very much on the behavior of ρ(x)
ρ(x) varies little  variance is small
ρ(x) = const  variance=0

 Evaluation of a integral

 Near minimum points  contribute less to the summation
 Near maximum points  contribute more to the summation

 More points are sampled near the peak ”importance sampling strategy”
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2.3 Variance Reduction using 
Rejection Technique

 Variance Reduction for Hit-or-Miss method
 In the domain [a,b] choose a comparison function

 Points are generated on the area under w(x) function
 Random variable that follows distribution w(x)
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2.3 Variance Reduction using 
Rejection Technique

 Points lying above ρ(x) is rejected

N
NAI '≈

nnn uxwy )(=





>
≤

=
)( if  0
)( if  1

nn

nn
n xy

xy
q

ρ
ρ

q 1 0
P(q) r 1-r AIr /=

a b

w(x)

X

X

X
X

X

O

O

OO

O

O

O

ρ(x)



2.3 Variance Reduction using 
Rejection Technique

 Error Analysis
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2.3 Variance Reduction using 
Rejection Technique

Start

Set N : large integer

N’ = 0 

Generate u1,  x= W-1(Au1)

Generate u2, y=u2 w(x)

If y<=  f(x) accept value N’ = N’+1
Else : reject value

I  = (b-a) h (N’/N)

End

Loop
N times
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2.4 Importance Sampling 
Method

 Basic idea
 Put more points near maximum
 Put less points near minimum 

 F(x) : transformation function (or weight function_
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2.4 Importance Sampling 
Method

)(/)(/ xfdydxxfdxdy =→=

 







==

b

a

b

a
dxxf

xf
xdy

xf
xI )(

)(
)(

)(
)( ρρ

=><
b

af dxxfx )()(ηη

)(
)()(

xf
xx ργ =

if we choose f(x) = cρ(x) ,then variance will be small
The magnitude of error depends on the choice of f(x)

f

b

a
dxxfxI >=<=  γγ )()(



2.4 Importance Sampling 
Method

 Estimate of error
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2.4 Importance Sampling 
Method

Start

Set N : large integer

s1 = 0 , s2 = 0

Generate xn according to f(x)

γn = ρ (xn) / f ( xn)

Add γn to s1
Add γn to s2

I ‘ =s1/N , V’=s2/N-I’2

End

Loop
N times
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3. Metropolis Monte Carlo  Method 
and Importance Sampling

 Average of a property in Canonical Ensemble
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3. Metropolis Monte Carlo  Method 
and Importance Sampling

 Create ni random points in a volume ri
N such that

 Problem : How we can generate ni random points 
according to  
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Use Markov chain with Metropolis algorithm

We cannot use inversion method



3. Metropolis Monte Carlo  Method 
and Importance Sampling

 Markov chain  :Sequence of stochastic trials satisfies few 
some conditions
 Stochastic process that has no memory
 Selection of the next state only depends on current state, and not 

on prior state
 Process is fully defined by a set of transition probabilities πij

πij = probability of selecting state j next, given that presently in state i.
Transition-probability matrix Π collects all πij



Markov Chain

 Notation 
 Outcome 
 Transition matrix 

 Example 
 Reliability of a computer

• if it is running 60 % of running correctly on the next day
• if it is down it has 80 % of down on the next day
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Markov Chain
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Features
- Every state can be eventually reached from another state
- The resulting behavior follows a certain probability


