Applied Statistical Mechanics Lecture Note - 7

Optimization Techniques

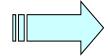
고려대학교 화공생명공학과 강정원

Introduction

- Optimization
 - ☐ Finding stationary point of a function
- Methods
 - Steepest Descent
 - Conjugate Gradient Method
 - Newton-Raphson Method
 - Locating the Global Minimum and Conformal Sampling
 - Stochastic and Monte Carlo Method
 - Molecular Dynamics
 - Simulated Annealing
 - Genetic Algorithm
 - Diffusion Method
 - Distance Geometry Method

Local Minimum vs. Global Minimum

- Steepest Descent
- Conjugate Gradient Method
- Newton' Method
 - → Local Minimum Methods ("Nearest minimum")
- A global optimization is an extremely difficult task for a multidimensional problem
 - Multiple minima
 - Combinatorial expolsion


Possible conformation for linear alkanes

$$CH_3 (CH_2)_{n+1} (CH_3)$$

N	No. of possible conformation 3 ⁿ	Time 1 conformation = 1 s
1	3	3s
5	243	4 min
10	59049	16 h
15	14348907	166 d

Combinatorial explosion!

The systematic (or grid) search is only possible for small molecules

Stochastic and Monte Carlo Method

- Similar to MC simulation of properties
- Procedure
 - Random "kick" is generated to one or more atoms
 - New geometry is accepted if the lower energy
 - □ Otherwise Boltzmann factor is calculated and compared with random number between (0,1)

Molecular Dynamics

- Solves Newton's second law of motion for atoms on an energy surface
- \blacksquare Available energy = (kinetic) + (potential)
 - ☐ Molecules are able to overcome barriers separating munima if sufficient kinetic energy is given
 - □ Closely related to the temperature of the system
 - ☐ Require long simulation time

Simulated Annealing

- MC and MD employ a temperature as guiding parameter
- At sufficiently high T and long time, conformation space is sampled
- Simulated Annealing (SA)
 - ☐ Initial T is chosen to be high (2000-3000K)
 - ☐ MC and MD run
 - ☐ T is slowly reduced (Trapped in minimum)

Genetic Algorithm

- Concept and terminology from biology
- Children = mixture of parent genes
 - ☐ Allowing mutation of parent genes
 - ☐ Best population are seelected based on Darwin's principle