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M echanics
/Thermodynamics Depa

 Mechanics
— Dealing with objects and motions
— Dealing with mechanical variables
* Velocity, acceleration, force, ....
e Thermodynamics
— Dealing with heat, work and energy

— Dealing with thermodynamic functions
e Internal energy, Enthalpy, Entropy, Gibbs energy,...



Mechanics and
Thermodynamics

Quantum Mechanics
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Classical Mechanics
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Statistical
Thermodynamics
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Thermodynamic Properties
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Classical Mechanics
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Newtonian Mechanics

F=ma=nr

r=r(xYV,2)
o dr
dt?

F=-VU




Lagrangian Mechanics R
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 |nvariant equation under coordinate
transformation

d| o .
= =123,...
a [aqj ] Jq; =



Hamiltonian Mechanics KR
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« More convenient for guantum mechanics and
statistical mechanics

H=K+U

H(r“‘,p”):zilzp—n‘]+U(r1,r2 ..... ry)

l L egendre transformation




Quantum Mechanics
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e Quantum Mechanics

— Relation between structure and (Particle/ Atom /
Molecule) and its energy (or energy distribution)

: Simple :
Introduction . Atomic ‘ Molecular
and Principles ‘ ar.)[:;l);ﬁtélo;s - Structure Structure




Classical Physics
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e Described by Newton’s Law of Motion

(17t century)
— Successful for explaining the motions of
objects and planets

H =Z%+U(rl,r2 ..... ry)

Sr Isaac Newton

— Inthe end of 19™ century, experimental
evidences accumulated showing that
classical mechanics failed when applied to
very small particles.



The failures of Classical Physics e
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« Black-body radiation
— A hot object emitslight (consider hot metals)

— At higher temperature, the radiation becomes shorter
wavelength (red - white = blue)

— Black body : an object capable of emitting and
absorbing all frequencies uniformly

The Visible Spectrum

lllll red ultraviolet
light light
] | I ’ I
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Detected
radiation

Wavelength (nm) \ .
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temperature T
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The failures of classical physics s

e Experimental observation

energy output shiftsto shorter
wavel engths.

— Wien displacement law

TA

max

1
=gc2 c, =1.44cmK

— Stefan-Boltzmann law

E=E/V =aT" M =oT*

— Asthe temperature raised, the peak in the

Energy distribution, p
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— Maximum
of p

WhelmWen

Increasing
temperature

Wavelength, A4
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Zero amplitude
at boundary

yVUVUVY

(a) A —\ wavelength

A=clv ,v =#of

cycles per sec




Rayleigh — Jeans law

First attempted to describe energy
distribution

e Used classical mechanics and equi-
partition principle

Lord Rayleigh

Rayleigh—
Jeans law

8aKT
dE=pdd p= 7

» Although successful at high wavelength, it
fails badly at low wavelength.

« Ultraviolet Catastrophe
— Even cool object emitsvisible and UV region
— We all should have been fried !

Experimental

Energy density, p

Wavelength, 4



Planck’s Distribution

Energies are limited to discrete value
— Quantization of energy

E =nhv . n=012,...

Planck’s distribution

8zhc
dE:’Od/l p: ﬂS(ehC/ﬂkT _1)

At high frequencies approaches the Rayleigh-Jeans
law

@M =1+ 4 )1
KT KT

The Planck’s distribution also follows Stefan-
Boltzmann's Las

p/{8r(KT)*/(hc)*}

251

20 -
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Max Planck

Rayleigh—
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Planck
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Heat Capacities L
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 Dulong Petit’'s Law

— Themolar heat capacities of monoatomic solids are the same, close
to 25 Jmoal. K
— Can bejustified using classical mechanics

— Mean energy of an atom oscillates about its mean position of solid is

KT
U, =3N,kT =3RT

C, =(8Umj =3R=24.9Jmol K
aT )y

2r Einstein

o Unfortunately, at low T the value i
approachesto zero




Einstein and Debye Formula e
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Einstein used the hypothesis that energy of
oscillation is confined to discrete value

9 eHE/ZT
C,=3Rf" f= -I—E(eHEIZT —:J

« Debye later refined Einstein formulataking into
account that atoms are not oscillating at the same

frequency.
4 _ X
J~0D/T X e : dX
° [A-€)

com 141
v T QD




Einstein and Debye's Theory SN

J2qirieta

Einstein

T/6¢ or T/6p



Atomic and Molecular Spectra s
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e Light comesfrom exited
atomic lamps shows sharp,
specific lines, rather than a
broad continua.

intensity

Emission intensity

Absorption

e Thisobservation can be

understood if we assume ﬂJ JL
that the energy of atoms and J!MM ! L o

moleculesis confined to Wavelength, 2/nm
discrete values.

An atomic spectrum A molecular spectrum
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Atomic and Molecular Spectra [T
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« Spectral lines can be
accounted for if we
assume that amolecule
emits a photon as it
changes between
discrete energy levels.

Energy
m




Wave-Particle Duality v
-The particle character of wave "
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Particle character of electromagnetic radiation

— Observation :
e Energies of electromagnetic radiation of frequency v
can only have E =0, hv, 2hv, ...
(correspondsto particlesn =0, 1, 2, ... with energy = hv)

— Particles of electromagnetic radiation : Photon

— Discrete spectra from atoms and molecules can be
explained as generating a photon of energy hv .

AE = hv



Wave-Particle Duality v
-The particle character of wave "

Photoel ectric effect

— Ejection of electrons from metals
when they are exposed to UV
radiation

— Experimental characteristic

* No electrons are g ected, regardless of the Metal
Intensity of radiation, unless its frequency
exceeds a threshold value characteristic
of the metal.

» The kinetic energy of gected electrons
Increases linearly with the frequency of
the incident radiation but is independent
of the intensity of the radiation .

« Even at low light intensities, electrons are
gjected immediately if the frequency is
above threshold.
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el ectrons



Wave-Particle Duality
-The particle character of wave Deqthera

Photoel ectric effect

— Observations suggests;;
e Collision of particle —like projectile that carries energy

 Kinetic energy of electron = hv —®
@ : work function (characteristic of the meltal)
energy required to remove a electron from the metal to infinity

 For the electron gection , hv > ® required.
* Incasehv < ®, no gection of electrons




Wave-Particle Duality
-The particle character of wave B

* Photodlectric effect

Kinetic energy
of ejected
electron

1
Ay 7 Mmgv
Energy needed to
remove electron
from metal

~2.09 eV (1.69 x 10* cm™, 593 nm)
- 2.25eV (1.81 x 10* cm™, 551 nm)
< 2.30 eV (1.86 x 10* cm™, 539 nm)

Kinetic energy of photoelectron, E,

Increasing
work function

Energy supplied
by photon

Frequency of incident radiation, v

A
)
T




Wave-Particle Duality

-The wave character of particles

 Diffraction of electron beam from metal
surface
— Davison and Germer (1925)
— Diffraction is characteristic property of wave
— Particles (electrons) have wave like properties !

— From interference pattern, we can get structural
Information of a surface

Electron
LEED (Low Energy Electron Diffraction) \ ///
-

Nickel crystal



Wave Particle Duality

De Brogile Relation (1924)

— Any particle traveling with alinear
momentum p has wave length A

Short wavelength,
high momentum

Matter wave: p = mv = h/A } >
— Macroscopic bodies have high |
momenta (large p) /\ ﬂ

->small wave length
—>wave like properties are not

AL




Schrodinger equation

e 1926, Erwin Schrodinger (Austria)
— Describe a particle with wave function

— Wave function has full information about the
particle

-2 dPy
2m dx?

Time independent Schrodinger equation

for a particlein one dimension

2nd order differential equation : Can be easily solved when V(x) and B.C are known !



An example

de{tizta
e Congtant potential energy V(x) =V
d2y 2m

- = I‘,‘ - \/)
dx? fi2 ( y

A solution of this equation is

1/2

Y = elk* = coskx + isin kx k = JZm(_I:"— V-)l
|y



Schrodinger Equation

: General form

Table 11.1 The Schrédinger equation

For one-dimensional systems:

2

7 d%y

2m dx?
where V(x) is the potential energy of the particle and E is its total energy. For three-
dimensional system

+ V(x)y = Ey

2

Viy + Vy = Ey
2m

where V may depend on position and V2 (‘del squared’) is
. 8 0 *

Ve 7] Tk 9 o2

Jx: dy“ 9dz°

In systems with spherical symmetry:

2 5
o @20 1,
RUEHE ) AL
where
At e 1 a2

C

Sin%0 3> | sin6 a0 . 00

In the general case the Schrédinger equation is written
Hy=Ey

Where H is the hamiltonian operator for the system:

)

Hd-2_y2iy

2m
For the evolution of a system with time, it is necessary to solve the time-dependent
Schrodinger equation

Lz
HY = ifi

ot

HY = E ¥
H=T +V

: Hamiltonian
operator




TheBorn interpretation
of the Wave Function Dejryea

e TheWave function

— Contains all the dynamic information
about the system

— Born made analogy with the wave theory
of light (sguare of the amplitudeis
Interpreted as intensity — finding
probability of photons)

— Probability to find aparticle is

proportional to 2 * . .
‘W‘ =¥ Y/ Probability Density

— It 1sOK to have negative values for wave
function

Max Born



Born inter pretation of
the Wave Function B

If the wavefunction of a particle has the value y at some point x, then the
probability of finding the particle between x and x + dx is proportional to

ly|* dx.
dx
—> | V4
175 1 Probability
= lyl?dx
X X +dx

If the wavefunction of a particle has the value y at some point r, then the
probability of finding the particle in an infinitesimal volume d7=dx dy dz at
that point is proportional to |y |* dz.



Born interpretation of

the Wave Function

Wavefunction

Probability
density

11.17 The sign of a wavefunction has no direct

physical significance: the positive and negative
regions of this wavefunction both correspond
to the same probability distribution (as given
by the square modulus of y and depicted by
the density of shading).



Normalization

A2t

 When ywisasolution, soisNy

 We can aways find anormalization const. such
that the proportionality of Born becomes equal ity

N[y wdx=1

) ¢

[ pdx=1 X Normalization const. are
already contained in wave

[y wdxdydz= [y pd7r =1 function




Quantization

(@)
 Energy of aparticleis 7
guantized

-> Acceptable energy can
be found by solving
Schrodinger equation

(c)
> There are certain ;

limitation in energies of

particles J L




Theinformation in a wavefunction

o SiImple case
— One dimensional motion, V=0

- n’ doy
2m dx®

Ey

\Sol ution

. . kA’
w=Ae"+Be™ E=

2m
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|1;/| 1
Im e sm kx

iR \Y /\ , /\ ., /\
2 / (@) -‘;ee coskx

cos kx cos’kx

nodes
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Eigenvalues and eigenfucntions AN
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e Momentum

E:k2h2 Po— p=kn
2m 2m

 Succinct form of Schrodinger egn.

/e
2m dx \
Hamiltonian operator Kinetic energy Potential energy
operator

operator



Eigenvalues and eigenfucntions AN
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* Eigenvalue equation

(Operator)(function) = (constant factor)* (same function)

Qu =y
Operator ‘// \

Eigenfunction Eigenvalue
Solution : Wave function Allowed energy (quantization)

(operator corresponding to observable)y = (valueof observable) x



Operators
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Position

. hd
e Momentum P, Py =——
| dX
e Potential energy Vzékxz \7=%kx2><
. . 2
 Kineticenergy g =% g __md
2m “ 2mdx?
PN PN PN 2 2 A
 Tota energy A= +v=-Tt"9" .y



nd, nd,
ax” Y ax” Y
Ei Ae"™ = —khAe™ = khy Ei Be ™ = khBe" = —khy
| dXx | dXx
p, =+kh p, =—kh
" Corresponds to de Brogile relation p,=ki=h/A

but with two direciton A1=2rlk




Properties of Wavefuncitons SO

High curvature,
high kinetic
energy

Low curvature,
low kinetic
energy

Wavefunction, v
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Region contributes
high kinetic
energy

Region contributes
low kinetic
energy

Position, x



Super position and «
expectation value aeieta

= 4| Alcos” kx

IOXW— 2h d coskx @Asmkx

/ dx |

Thisexpression is not eigenvalue equation _ |
- Can beinterpreted asa liner combination of e'kx and e—'kx

W = 2 Acoskx MZ




Superposition and expected “€©
el

 When the momentum ismeasure, in a single observation one of the
eigenvalues corresponding to the wave function k,that contributes
to the superposition will be found

 Theproportionality of measuring a particular eigenvaluein a
series of observation is proportional to square modulus of coeff. In

the linear combination 2
(4

« Theaveragevalueof alarge number of observation is given by
expected value:

(Q) :jw*fz wdr



The uncertainty principle R @

ATzt

* \When momentum is known precisely, the
position cannot be predicted precisely

— Shown by examples
— Only probability can be predicted



The uncertainty principle R
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* \WWhen the position Is known precisaly,

_AL

i X

Location
of particle ———> Location becomes precise at the
expense of uncertainty in the momentum




