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Molecular Dynamics Simulation
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|. Basic Molecular Dynamics Simulation Method
II. Properties Calculationsin MD
[11. MD in Other Ensembles



I. Basic MD Simulation «
A

B MC jdr A yexpl- AU (T}
Probabilistic ssimulation technique (A)= I dr expi— AU (r")]
Limitations

* require the knowledge of an equilibrium distribution
* rigorous sampling of large number of possible phase-space
» givesonly configurational properties (not dynamic properties!)

m MD

Deterministic simulation technique

Fully numerical formalism
» numerical solution of N-body system



I. Basic MD Simulation
- The Idea :ait}mm

B Follow the exactly same procedure as real experiments
Prepare sample
o prepare N particles
 solve equation of motions

Connect sample to measuring instruments (e.g. thermometer,
viscometer,...)

 after equilibration time, actual measurement begins
Measure the property of interest for a certain time interval
e average properties

B Example : measurement of temperature

1 ,\ 1 mvZ(t)
_ =_k.T — T@{)= [
<2mv“> 2 O=21N,



I. Basic MD Simulation
- Equation of Motion Deithetm

B Classica Newton's eguation of motion
Three formulation
* Newtonian
e Lagrangian
e Hamiltonian
Hamiltonian preferred for many-body systems
« solution of 2N differential equations

o _pi r=r(r,r,.r,)

ot m p =p( Py Py IOZ) Solution methods : Finite Difference Method
op.
— 1 = F Fi - Fi'

at | JZ:;- J
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I. Basic MD Simulation
- Verlet Algorithm Deithetm

B Verlet (1967) : Very smple, efficient and popular
algorithm
r(t+ot) =r(t) + Lp(t)st + L F(t)ot” + 1 ¥(t)5t° + O(St™)
r(t-ot) =rt) - 1p)st + LF()st* - Li(t)ot® + O(St*)

l

r(t+ot) +r(t—ot) = 2r(t) + L F(t)5t* + O(St*)

|

r(t+6t) = 2r(t) - r(t - ot) + LF(t)ot* + O(st”)

feature : update without cal culating momentum (p)



I. Basic MD Simulation
- Leapfrog Algorithm Deithetm

B Hockeny (1970), Potter (1972)
B Half-step leap-frog algorithm
B Mathematically equivalent to Verlet algorithm
r(t+dt) =r(t) + v(t + 3 6t)dt
v(t+36t) = v(t -3 6t) + LF(t)dt

|

r(t+ot) =r(t)+| v(t-16t)+ LF(t)st | ot



2. Properties Calculation in MD o
- Energies Deitheta

B Potential energy
Can be calculated during force calculation

B Kinetic energy

Kzzémvi2



2. Properties Calculation in MD 0
- Pressures Deithetm

B Inan MD simulation, calculation of pressure using tensor notation is
not the most efficient method.

B For homogeneous systems, there is simple way to calculate pressure
(Irving and Kirkwood, 1950)

Kinetic —ideal gasterm Configurational — called “Viria”

P= \]/[Z mv, (t)v, (t) +Z Zrij (DF; (t)}

1
= pk T+— I (t)Fi' (t)
l Y, Z‘ ZJ: pR —— Calculate when force update

Calculate when velocity update



2. Properties Calculation in MD (
- Transport Properties Deifera

B Approachesfor transport properties
Method 1 : NEMD (Non-equilibrium Molecular Dynamics)
» Continuous addition and removal of conserved quantities
» Gives high signal-to-noise ratio (good statistics)
Method 2 : Equilibrium molecular dynamics
« Start with anisotropic configuration of mass, momentum and energy

* Observe natura fluctuations and dissipation of mass, momentum and
energy
» Poor signal-to-noise ration (poor statistics)

 All transport properties can be measured at once



2. Properties Calculation in MD

- Transport Properties

B Differential Balance Equation

S

=0 B8
&8
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Mass Energy Momentum
ac(r't)+v.':o cpaT(r’t)+Voq:O pDV(r’t)+Vor:O
ot ot Dt =
B Constitutive Equations
Fick’'sLaw Fourier’s Law Newton's Law
j=—-DVc g=-kVT Ty :_VVy(p\/X)




2. Properties Calculation in MD o
- Transport Properties Deitheta

B Purpose : Obtain transport coefficient by molecular smulation

Not that the “laws’ are only approximation that apply not-too-large
gradients

In principle transfer coefficients dependson c, T and v

B Green-Kubo Relation

Relation between transport properties and integral over time-correlation
function.



2. Properties Calculation in MD v
- Transport Properties o

B Consider self-diffusion in apure substance

B Consider how molecules are dissipated when initial configurations are
given as Dirac deltafunction

B Combine mass balance egn. With Fick’s Law

Dimensionality
of given system

Solution
aC(I',t) _ DVZC(I‘,'[) — O /
ot )

r
c(r,t) = (22Dt) ?'? exp(——)
B.C. c(r.t)=d(r) ‘ 2Dt




2. Properties Calculation in MD v
- Transport Properties o

We do not need concentration itself c(r,t) - just diffusion coefficient (D)

<r2(t) >= jc(r,t)rzdr

) <05
[er,tyar =1 ot
oc(r,t) ) B l
e DV<c(r,t)=0

<r2(t) >= %Z(ﬁ (t))* =2dDt




2. Properties Calculation in MD (
- Transport Properties Deifera

Sope here gives D
(r°)

\
<r2(t) >= %Z (r. (t))* =2dDt

* Plot of t vs. square of traveled distance gives diffusion coefficient
* |n 3D —space, <r2> is mean square displacement (MSD)



2. Properties Calculation in MD v
- Transport Properties o

B An aternative formulation using velocity instead of particle position

t

t
<r2(t)> = < [vzydz | v(rz)d12>
0

0
t

r,(t) = J'V(T)dT ‘ = j.dflj.d’fz@(fz) V(7))

0
t (41
=2|dny | dzp(v(72) - v(7))

0o 0
t
=2|dzy | d7o(v(0)- v(7y — 7))
0 0
tot
=2 drlj dz(v(0)- v(z))

0 0

t
2dDt = 2t [dz(v(0)- V(7))
0



2. Properties Calculation in MD o
- Transport Properties Deitheta

t 1%
2dDt = 2t [ dz < v(0)v(z) > . D=4 [dz<v(O)v(r) >
0 0
<v(Q)v(z) > <v(0)v(z) >=<Vv(t")v(t") >
eAutocorrelation function :

property difference between two adjacent time steps

*Area under the curve gives the value of self-diffusion coefficient

L

N T




2. Properties Calculation in MD &

- Evaluation of time correlation functions

de{tizta

B Time consuming and require alot of storage

Alternative method : FFT (Fast Fourier Transform), Coarse
Graining method

N R N RN N N N N
Al At A) Al A) Al Al) A) Al Al
(AMADAQ))  AAFAAFAAFAAFAAFAAGAAFAAGAAG .
N e e e S N R B
Alt) Alt) Al Alty) Aty) Alts) Alty) Alty) Alty) Allo)
Ny Y vV vy v v v

(AQAYAQ)) AAFAAGAAFAAFAAFAAFAAGAA ...

Ally) Alt) Al Alty) Alt) Alts) Alte) Alty) Altg) Alty)

N eme—————

(AGGADA0)) AA+AA+AA +AA+A Ag+...



2. Properties Calculation in MD o
- Transport Properties Deitheta

B Zero-shear viscosity

n:%IdT<O—xy(o)o-xy(T)> ny:|2|: Vvy+ ZXIJ fy(r|J):|

I;ﬁ]

B Thermal Conductivity

q=-2 Z{mv 2 Zu(r.,)}

|¢J

A = et



2. Properties Calculation in MD o
- Radial Distribution Function 2eiea

B Time averaged value of number density
B Ensemble averaged number density

V
g(r):& g(r)zﬁ<zzg(r_rij)>
D

I

\4 r

»
»

Just count the number of molecules within a range

v



3. MD in Other Ensembles (
- Constraints ey

B With proper choice of g(r), we can calculate useful thermodynamic
properties

Internal energy U°®= 27£|\|,0_[¢(r)g(r)r2dr

272',02 do(r) 3
P = pkT — r)rdr
Pressure P 3 _([ dr g(r)

Chemical Potential

ﬂszInK'[;Asj { {NZT szd(b( )g(r)rBdr}}




3. MD in Other Ensembles
— Constraints ey

B Hamiltonian formulation
Conservation of kinetic + potential energy
H=K+U
(N,V,E) ensemble
Cannot be applied to other ensemble
e constant T, constant P, ...
» for example we can keep const T while H is constant
 distribution of Kand U
B Two typesof constraints
Holonomic constraints : may be integrated out of equation of motion

Nonholonomic constraints : non-integrable (involves velocities)
e Temperature, pressure, stress, ...




3. MD in Other Ensembles
— Constraints ey

B Force momentum temperature to remain constant
B One (bad) approach

at each time step scale momentato force K to desired value
» advance positions and momenta
o apply p"™ = Ap with A chosen to satisfy
* repeat
“equations of motion” areirreversible
» “trangition probabilities’ cannot satisfy detailed balance

does not sample any well-defined ensemble



3. MD in Other Ensembles
— Constraints ey

B “Gauss principle of least constraints’

Gaussian constraints : perturbative force introduced into the
eguation of motion minimizes the deviation to classical trajectories
of particles from their unperturbed trajectories

Consider afunction f , afunction of particle acceleration

f(fi)=%zv{i‘i —H

f=0: normal Newtonian equation of motion
otherwise, constrained non-Newtonian equation of motion
Gauss principle : physical acceleration = f to be minimum

%(f(i‘i)—{g(fi))zo ¢ : Lagrangin (Gauss) Multiplier



3. MD in Other Ensembles
— Constraints DeiTheta

B Constant Temperature constraints

. -2 3NKT
G(ri,t):zmzr'— =

g(i:i’fi’t):d—G:Zrm.'i or, =0
dt i a
(

] "
DA

mr, = F, —le"i
—

Newtonian Constraint force

f()-¢g(k))=0




3. MD in Other Ensembles
— Constraints DeiTheta

B Modified equation of motion

m
P :Fi _éml".
Zi'i 'Fi

= Z mi > » one of good approach, but temperature is not specified !
Y



3. MD in Other Ensembles
— Nose Thermostat Deityea

B Extended Lagrangian Equation of Motion

N . \2
LNOSG=Z@—U(rN)+%SZ—ngInS
=

_dL 2.
P|=a—.:m31'i
i — _gkTIns
_L_ s e
S_aS_ KSZ%QS



3. MD in Other Ensembles

— Nose-Hoover Thermostat

B Equations of motion
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l'i:

B [ntegration schemes

predictor-corrector algorithm is straightforward
Verlet algorithm isfeasible, but tricky to implement

t-ot t t+0t

At this step, update of & L |

—+  depends on p; update of p £ = 1 %ﬂ _ gkT
F / dependson & Qliam




