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I. Basic MD Simulation 
- MC vs. MD

 MC 
 Probabilistic simulation technique
 Limitations 

• require the knowledge of an equilibrium distribution
• rigorous sampling of large number of possible phase-space 
• gives only configurational properties (not dynamic properties !)

 MD 
 Deterministic simulation technique 
 Fully numerical formalism 

• numerical solution of N-body system 
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I. Basic MD Simulation 
- The Idea 

 Follow the exactly same procedure as real experiments 
 Prepare sample 

• prepare N particles
• solve equation of motions

 Connect sample to measuring instruments (e.g. thermometer, 
viscometer,…)

• after equilibration time, actual measurement begins
Measure the property of interest for a certain time interval 

• average properties 

 Example : measurement of temperature
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I. Basic MD Simulation 
- Equation of Motion

 Classical Newton’s equation of motion 
 Three formulation

• Newtonian
• Lagrangian
• Hamiltonian 

 Hamiltonian preferred for many-body systems
• solution of 2N differential equations 
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I. Basic MD Simulation 
- Verlet Algorithm 

 Verlet (1967) : Very simple, efficient and popular 
algorithm 
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I. Basic MD Simulation 
- Leapfrog  Algorithm 

 Hockeny (1970), Potter (1972)
 Half-step leap-frog algorithm 
 Mathematically equivalent to Verlet algorithm 
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2. Properties Calculation in MD
- Energies 

 Potential energy 
 Can be calculated during force calculation 

 Kinetic energy 
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2. Properties Calculation in MD
- Pressures

 In an MD simulation, calculation of pressure using tensor notation is 
not the most efficient method. 

 For homogeneous systems, there is simple way to calculate pressure 
(Irving and Kirkwood, 1950) 
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2. Properties Calculation in MD
- Transport Properties

 Approaches for transport properties 
Method 1 : NEMD (Non-equilibrium Molecular Dynamics)

• Continuous addition and removal of conserved quantities
• Gives high signal-to-noise ratio (good statistics)

Method 2 : Equilibrium molecular dynamics
• Start with anisotropic configuration of mass, momentum and energy 
• Observe natural fluctuations and dissipation of mass, momentum and 

energy 
• Poor signal-to-noise ration (poor statistics)

• All transport properties can be measured at once



2. Properties Calculation in MD
- Transport Properties

 Differential Balance Equation

 Constitutive Equations
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2. Properties Calculation in MD
- Transport Properties

 Purpose : Obtain transport coefficient by molecular simulation 
 Not that the “laws” are only approximation that apply not-too-large 

gradients 
 In principle transfer coefficients depends on c, T and v

 Green-Kubo Relation 
 Relation between transport properties and integral over time-correlation 

function.



2. Properties Calculation in MD
- Transport Properties

 Consider self-diffusion in a pure substance
 Consider how molecules are dissipated when initial configurations are 

given as Dirac delta function 

 Combine mass balance eqn. With Fick’s Law 
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2. Properties Calculation in MD
- Transport Properties
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2. Properties Calculation in MD
- Transport Properties
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Slope here gives D

• Plot of t vs. square of traveled distance gives diffusion coefficient
• In 3D –space, <r2> is mean square displacement (MSD) 



2. Properties Calculation in MD
- Transport Properties

 An alternative formulation using velocity instead of particle position
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2. Properties Calculation in MD
- Transport Properties
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•Autocorrelation function : 
property difference between two adjacent time steps

•Area under the curve gives the value of self-diffusion coefficient



2. Properties Calculation in MD
- Evaluation of time correlation functions
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 Time consuming and require a lot of storage
 Alternative method : FFT (Fast Fourier Transform), Coarse 

Graining method 



2. Properties Calculation in MD
- Transport Properties

 Zero-shear viscosity

 Thermal Conductivity 
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2. Properties Calculation in MD
- Radial Distribution Function
 Time averaged value of number density
 Ensemble averaged number density 
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3. MD in Other Ensembles 
- Constraints 

 With proper choice of g(r), we can calculate useful thermodynamic 
properties  

 Internal energy

 Pressure

 Chemical Potential
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3. MD in Other Ensembles 
– Constraints 

 Hamiltonian formulation 
 Conservation of kinetic + potential energy 

H = K + U
 (N,V,E) ensemble 
 Cannot be applied to other ensemble 

• constant T, constant P, …
• for example we can keep const T while H is constant
• distribution of K and U

 Two types of constraints 
 Holonomic constraints : may be integrated out of equation of motion
 Nonholonomic  constraints : non-integrable  (involves velocities) 

• Temperature, pressure, stress, … 



3. MD in Other Ensembles 
– Constraints 

 Force momentum temperature to remain constant
 One (bad) approach

 at each time step scale momenta to force K to desired value
• advance positions and momenta
• apply pnew = λp with λ chosen to satisfy
• repeat 

 “equations of motion” are irreversible
• “transition probabilities” cannot satisfy detailed balance

 does not sample any well-defined ensemble 



3. MD in Other Ensembles 
– Constraints 

 “Gauss’ principle of least constraints”
 Gaussian constraints : perturbative force introduced into the 

equation of motion minimizes the deviation to classical trajectories 
of particles from their unperturbed trajectories 

 Consider a function f , a function of particle acceleration

 f=0 : normal Newtonian equation of motion 
 otherwise, constrained non-Newtonian equation of motion
 Gauss’ principle : physical acceleration  f to be minimum

 







−=

i i

i
ii m

mf
2

2
1)( Frr 

( ) 0)()( =−
∂
∂

ii
i

gf rr
r




ζ   Multiplier (Gauss)Lagrangin :ζ



3. MD in Other Ensembles 
– Constraints 

 Constant Temperature constraints 
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3. MD in Other Ensembles 
– Constraints 

 Modified equation of motion 
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3. MD in Other Ensembles 
– Nose Thermostat 

 Extended Lagrangian Equation of Motion 
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3. MD in Other Ensembles 
– Nose-Hoover Thermostat 

 Equations of motion

 Integration schemes
 predictor-corrector algorithm is straightforward
 Verlet algorithm is feasible, but tricky to implement
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