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Introduction

 Previous simulation methods : Properties of a single 
isolated phase

 Molecular Simulation Techniques can be extended to 
multiple phases 
 Thermodynamic Phase Coexistence : Two or more phases are 

equally stable 
 Condition of Phase Coexistence 
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Phase Diagrams

 Gibbs Phase Rule
 F = 2 + C – P 

• F : Degree of Freedom
• C : Number of Components
• P : Number of Phases
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Straightforward Simulation 

 Change T or P for given model system and wait for a 
phase transformation occur 
 Major Drawbacks

• Hysterisis : Irreversible phase transformation 
• Large free energy barrier at interface  Depends on the size of the 

interface  Depends on the choice of simulation system 
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Alternative Methods

 Gibbs Ensemble Method (Panagiotopoulos, 1987) 
 Gibbs – Duhem Integration Method (Kofke, 1993) 



Why free energies are important 
in Phase Coexistence ? 

 From 2nd Law of Thermodynamics
 At equilibrium, S is maximum for (N,V,E)  
 (N,V,E)  System :   A is minimum 

A = U – TS  (Helmholtz Free Energy) 
 (N,P,T) System :  G is Minimum 

G = H – TS (Gibbs Free Energy) 

 Equilibrium Condition 
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Free energy cannot be directly 
measured in simulation

 Helmholtz free energy

 Not the form of canonical average over phase space 
 Depends directly on the available volume in the phase space
 Cannot be directly measured in real experiment, too. 

 Derivatives of free energy 
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Kirkwood’s coupling parameter 
method

 Assume U depends on the coupling parameter λ : 

 Partition function for potential energy function 
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Kirkwood’s coupling parameter 
method

 Free energy difference 

 All free energy methods are based on calculation of free 
energy differences 

 Example : 
 Volume of R can be measured as a fraction of total volume 

• Sample the reference system 
• keep an average of the fraction of time occupying the target system
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Chemical Potentials 

 Chemical Potentials
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Chemical Potentials 

 For sufficiently large N, 
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Widom’s Test Particle Insertion 
Method 

 Widom (1963) 
 A “ghost particle” is randomly inserted into the ensemble 

and calculating the energy of its interaction 
 The test particle is a “ghost”, it does not affect the 

properties of real molecule
 In principle , this method can be used in any simulation 

system for the calculation of chemical potential  



Implementation of Widom’s 
Method 

 Carry out conventional NVT or NPT Monte Carlo 
Simulation of N particles 

 At frequent interval during simulation, randomly generate 
a coordinate, sN+1 uniformly over unit cube

 For given sN+1, compute :

 Average  chemical potential 
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Note on Widom’s Method

 Widom’s method can be used as a verification that 
equilibrium has been attained 

 At high density, some difficulties are encountered 
 Difficult to insert a particle at given location 



Gibbs Ensemble Method 

 Proposed by Panagiotopoulos (1987,1988) 
 Simulation method without interface 
 Thermodynamic contact without physical contact 

Two simulation volumes



Gibbs Ensemble Method 

 MC simulation includes moves that couples two 
simulation volumes 

Particle exchange equilibrates 
chemical potential

Volume exchange 
equilibrates pressure

Incidentally, the coupled moves enforce mass and volume balance



Gibbs Ensemble Method 



Gibbs Ensemble Method 

 Acceptance of three moves  Governed by Pseudo 
Boltzman Factor 
 Displacement movement 

 Volume change

Molecular transfer
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Gibbs Ensemble - Algorithm



Gibbs Ensemble – Result 

 Water + Methanol Mixture 

•Strauch and Cummings, Fluid Phase Equilibria, 86 (1993) 147-172;
• Chialvo and Cummings, Molecular Simulation, 11 (1993) 163-175. 



Gibbs Ensemble – Result 

 Panagiotopoulos Group



Gibbs Ensemble Limitation

 Limitation arise from particle-exchange requirements 

?

Dense phase or
Complex molecules

Solid phases



Gibbs-Duhem Integration 

 David Kofke (1993) 
 Basis : Numerical Integration of Cluisus – Clapeyron 

Equation 
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Gibbs – Duhem Integration 

 GE equation 

 Treat as nonlinear first order ODE
 Use (NPT) simulation to obtain ΔH/Δz Fi
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Predictor-Corrector Algorithm 
Implementation lnp
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 Given initial condition and slope 
(= –Δh/ΔZ), predict new (p,T) pair.

 Evaluate slope at new state 
condition…

 …and use to correct estimate of new 
(p,T) pair



Gibbs Duhem Integration 

 Potentially very efficient algorithm 
 Coexistence curves for solid-liquid systems 
 Coexistence curves for complex molecules 

 Algorithm is not robust 
 No built-in diagnostics 

 Additional free energy calculation may be required to 
check the result


