Applied Statistical Mechanics
Lecture Note - 11

-l podgm)]

Molecular Monte Carlo Method

DAy
st B SSH
XN Q|
OO



Theoretical Basis of Molecular Monte Carlo Method

|mplementation of Molecular Monte Carlo Method in
NVT Ensemble

|mplementation of Molecular Monte Carlo Method in
Other Ensembles
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. Theoretical Basis of Molecular Monte Carlo Method

I-1. Introduction

B Oveaview of Molecular Monte Carlo Method

Generation of Random

Objective Configurations
Calculation of Macroscopic Use of Random Number
Properties from Microscopic . . . mportance Sampling
Properties (intermol ecul ar . Markov Chain
forces...) . Metropolis Algorithm

Averaging Method . . Approximations

Ensemble Averages '

Periodic Boundary Condition
Minimum Image Convention
Long Range Correction
Neighborhood List

NVT Ensemble
NPT Ensemble
UPT Ensemble




I. Theoretical Basis of Molecular Monte Carlo Method

I-2. Averaging Method S
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B Statistical Mechanics : Theoretical Basis for derivation of
macroscopic behavior from microscopic properties

B Configuration : position and momenta (r"¥ and p?)
B Configurational Variable: A(r" , pV)

B Ensemble average
Weighted sum over all possible members of ensemble
Using classical mechanics

< A>= é h3]:VLN! J.dej’drNA(pN,rN)exp{— ,BE(rN’pN)}
0= h?’]:VI-N' IdejdrN exp{— BE(p" rN)}



I. Theoretical Basis of Molecular Monte Carlo Method

I-2. Averaging Method
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B Separation of Energy
Total energy is sum of kinetic and potential parts

E(r",p")=K(p")+U(@")

Kinetic parts can be treated separately from potential parts

Jar" expl- ﬂZp, I 2m)[ dr’ exp- U ()]

h3N |

1

_ Fﬁf dr" exp(- BU(r")}
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A3N ZN
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I. Theoretical Basis of Molecular Monte Carlo Method

I-2. Averaging Method
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B Ensemble Average of aproperty

IdrNA(r 7 )exp{ LU }
[dr expr- BU ()}

1 N N
<A> ﬁ drV A", p )exp{ LU

Monte Carlo Simulation calculates excess thermodynamic
properties that result in deviation from ideal gas behavior

B Metropolis Monte Carlo Method

(A)=] eXp{Z‘N’EgV(; )}A(rN)drN = [ () AGYdr = (4)

trials N (r™)

probability of a given configuration



I. Theoretical Basis of Molecular Monte Carlo Method

I-3. General MMMC Scheme

Loop

cycles

Generate initial configuration

Y

Calculate Energy (2.2)

andom Number Generator (2.1)

A 4

Trial Move
Acceptance Criteria (2.5)

Calculate Summation of Properties

A

A 4

Average Properties

A

PBC and MIC (2.3)

Importance Sampling
(Metropolis Algorithm)




I1. Implementation of MMC in NVT Ensemble

II-1. Random Number Generation
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B Thereisnothing like “Random number generator *
“Pseudo Random Number Generator “
Most of the pseudo random number generator repeats “ sequence”
It isimportant to know how long is the sequence

B Most FORTRAN, C compiler supplies random number
generator based on Linear Congruental Method
The relationship will repeat when n greater than 32767

I,.,=(al,+c)mod(m) Ex) Digital FORTRAN
RANDOM_NUMBER subroutine

a,c>0,m>l,,a,c Period = 10+*18




I1. Implementation of MMC in NVT Ensemble

II-1. Random Number Generation

B RANDU Algorithm
1960's, IBM

I, =(65539x1 )mod(2*)

This generator was found to have serious problem : “The
Marsaglia Effect”

B |[mproving the behavior of random number generator
Two initial seed can extend the period grater than m

I =(axI _,+bxI _,)mod(m)



I1. Implementation of MMC in NVT Ensemble

II-1. Random Number Generation
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B Using Random number generators
Check the period
Serial Test: (x,y) or (x,y,z)
Be careful about dummy argument

o Usedifferent dummy argument for two different set of random
numbers

o Compiler’'s optimizer istrying to remove multiple calls to random
number generator

DO 11=1,100
X = RAND(IDUM) + RAND(IDUM) X = RAND(IDUM)
1 CONTINUE
l » You have to change
dummy argument
_ each calls
X = 2.0 » RAND(IDUM) Not evaluating every steps

Evaluated only once




I1. Implementation of MMC in NVT Ensemble

II-1. Random Number Generation

bx = rLx/float(nx)

by = rLy/float(ny)

do 60 ip=1, np
x(ip) = ( 0.5*(1.-float(nx)) +
float(mod( ip-1, nx )) )*bx
y(ip) = ( 0.5*(1.-float(ny)) +
float((ip-1)/nx) )*by

60 continue

00 62
A\L i
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B [nitializing Configuration (Example: 2D Space)

bx = rLx/float(nx)

by = rLy/float(ny)

do 60 ip=1,np
x(ip) = ( 0.5*(1.-float(nx)) +
float(mod( ip-1, nx ))+0.1*r2() )*bx
y(ip) = ( 0.5*%(1.-float(ny)) +
float((ip-1)/nx) +0.1%r2())*by

60 continue




I1. Implementation of MMC in NVT Ensemble

I1I-2. Calculating Potential Energy
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B Potential Energy of N-interacting particles

U:Zul(ri)_l_ZZMZ(rﬂrj)_l_yy yus(iﬁﬂ”j,rk)Jr---

i j>i i j>i k>j>i

Three-body interaction

Two-body interaction

\ 4

Effect of external field



I1. Implementation of MMC in NVT Ensemble

I1I-2. Calculating Potential Energy
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B Typicaly, effect of external field iszero

B Two body interaction isthe most important term in the
calculations

Truncated after second term
B For some cases, three body interactions may be important

B |ncluding three body interactions imposes avery large
Increase in computationtime ;o A7

B Short range and long range interactions
Short range : Dispersion and Repulsion

Long range : lonic interaction

» Special methods are required for long range interactions due to
limited size of simulation box



I1. Implementation of MMC in NVT Ensemble

I1I-2. Calculating Potential Energy

B Naive caculation

N-1 N

U= Z Z”z(’”ly)

i=1 j=i+l

Pseudo Code

Summations are chosen to avoid duplicated evaluation and

=5

“self” Interaction

o

r

Loopi=1, N-1
Loop j = i+1,N
Evaluate r;
Evaulate U;
Accumulate Energy
End j Loop
End j Loop

FORTRAN Code

DO10I=1,N
DO 20J=1+1, N
DX = X(1)-X(J)

DY = Y()-Y(W)

RIJ2 = DXxDX + DY*DY

RIJ6 = RIJ2*RIJ2*RIJ2

RIJ12 = RIJ6*RIJ6

UTOT = UTOT + 1/RIJ12 - 1/RIJ6
20 CONTINUE
10 CONTINUE




I1. Implementation of MMC in NVT Ensemble

I1-3. Periodic Boundary Condition and 0
Minimum Image Convention g
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B Problems

Simulations are performed typically with afew hundred molecules
arranged in a cubic lattice = computational limitation

» Large fraction of the molecules can be expected in a surface rather
than in the bulk

Simulation require summation over almost infinite interactions

PBC (Periodic Boundary Condition) and MIC (Minimum Image
Convention) are used to avoid this problems



I1. Implementation of MMC in NVT Ensemble

I1I-3. Periodic Boundary Condition and
Minimum Image Convention e

B Periodic Boundary Condition
Infinite replica of the simulation box

Molecules on any lattice have mirror
Image counter partsin all the other

boxes o

Changes in one box are matched o / NN /) S
exactly in the other box - surface <
effects are eliminated




I1. Implementation of MMC in NVT Ensemble

I1-3. Periodic Boundary Condition and 0

B Minimum Image Convention

Minimum Image Convention e

Summation over infinite array of o o o
periodic image = impossible O ® O ® O ®
For a given molecule, we position ¢ 6760 670 6
the molecule at the center of a 0 g i
box with dimension identical to ® o © o © S
simulation box ® ® © ® ® © ® ® O
Assume that the central o0 o0 o0
molecules only interacts with all \

mol ecules whose center fall

— : . Nearest images of colored sphere
within thisregion * ®



I1. Implementation of MMC in NVT Ensemble

I1-3. Periodic Boundary Condition and 0
Minimum Image Convention :
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B [mplementing PBC
Decision based : |F statement
Function based : rounding , truncation, modulus

Decision Function

BOXL2 = BOXL/2.0
IF(RX(1).GT.BOXL2) RX(I)=RX(l)-BOXL RX(1) = RX(l) - BOXL * AINT(RX(I)/BOXL)
IF(RX(1).LT.-BOXL2) RX(l) = RX(l) + BOXL




I1. Implementation of MMC in NVT Ensemble

I1I-3. Periodic Boundary Condition and

Minimum Image Convention

B |[mplementing PBC and MIC

Pseudo CODE

Loopi=1, N -1
Loopj=1+1,N
Evaluate r;
Convert r; to its periodic image (r;’)
if (r;” < cutOffDistance)
Evaluate U(r;)
Accumulate Energy
End if
End j Loop
End i Loop

do 10 ip=1, Np—1
xip = x(ip)
yip = y(ip)
do 20 jp=ip+1, Np
xx = xip = x(jp)
dx = dble( xx — rlx*anint( xx/rLx ) )
yy =yip - y(jp)
dy = dble( yy = rLy*anint( yy/rLy ) )
rij2 = dx*dx + dy*dy
if (rij2 .It. dcut2) then
rije = 1.d0/(rij2xrij2*rij2)
rij12 = rij6+*rij6
ham = ham + rij12 — rij6
pre = pre + 2.d0*rij12 - rij6
endif
20 continue
10 continue

FORTRAN CODE




I1. Implementation of MMC in NVT Ensemble

I1-3. Periodic Boundary Condition and 0
Minimum Image Convention g
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B Featuresdueto PBC and MIC
Accumulated energies are calculated for the periodic separation distance
Only molecules within cut-off distance contributed to calculated energy

Caution : Cut-off distance should be smaller than the size of ssmulation box =
If not, violationto MIC

Calculated potential = truncated potential
B | ong range correction

X

full =X, + X,

rc

E, = ZIZN,Orrzu (r)dr

For NVT ensemble No. of particle and density (V) are const.
* LRC can be added after smulation

For other ensembles, LRC must be added during the simulation



I1. Implementation of MMC in NVT Ensemble

I1-4. Neighborhood List
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B [N 1967, Verlet proposed a new algorithm to reduce
computation time

B |nstead of searching for neighboring molecules, the neighbors
of the molecules are stored and used for the calculation

B Variable d isused to encompass slightly outside the cut-off
distance

B Update of thelist
update of thelist / 10-20 steps
Largest displacement exceed ¢ value



I1. Implementation of MMC in NVT Ensemble

I1-5. Metropolis Sampling Algorithm S
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B Average of aproperty

(4)= Iexp{Z 'fg(; )}A(I’N)drN :IW(I’N)A(I’N)drN =(4)

trials, N (r™)

B There arealot of choice to make Markov process that
follows a given PDF

“Microscopic reversibiltiy”
Sufficient, but not necessary condition

PIT=1p meﬁmn:pn

dYr,, =1

This condition is not sufficient :
more conditions are required to setup transition matrix

pmﬂ-mn :pnﬂ:nm




I1. Implementation of MMC in NVT Ensemble

I1-5. Metropolis Sampling Algorithm S
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B |n 1953, Metropolis showed atransition probability matrix
exists than ensures that the PDF is obeyed

ﬂ-mn:amn pnzpm’min

ﬂmn:amn(p”J p,<p, M*RN
P

ﬂ-mm zl_zﬂmn

B Other choice can also satisfies condition of microscopic
reversibility (Barker , 1965)

ﬂ'mn:amn[ P j m#%n




I1. Implementation of MMC in NVT Ensemble

I1-5. Metropolis Sampling Algorithm S
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B Metropolis Recipe
with probability z, atrial state for the move
If p,> p, accept n as new state

Otherwise, accept n as the new state with probability p, > o,
» Generate arandom number R on (0,1) and accept if R < p, /p,,

If not accepting n as new state, take the present state as the next
onein Markov chain (rz,, # 0)

B What isthevaueof o ?

o =1N, If accepting
o =0 If not accepting

N, : Number of accepted trials



I1. Implementation of MMC in NVT Ensemble

11-6. Implementation

[ Start ]

L Oop Ncycle

-

Generate initial configuration

'Y

Loop N,

toms

A4

Generate trial displacement

rTrial = PBC(r + (2*rand()-1)* dMax)

!

Calculate the change in energy
AE = Etrial B Eatom

:

Apply MetropolisAlgorithm
if AE <0 or exp(-PAE) >=rand() then accept move
elsereject move

r=rnew
E=E+AE
nAccept = nAccept

A 4

Update periodically maximum displacement, dMax

A

A

A

Calculate Properties
Calculate Error Estimates

if (acceptRatio > 0.5)
dMax = 1.05* dMax
else
dMax = 0.95* dMax

-

[ End J




I1. Implementation of MMC in NVT Ensemble

I1-6. Implementation

Monte Carlo Move

Entire S mulation

e New configuration
Initialization
A
v < y e O\
Reset block sums Select type of trial move
P ] each type of move has fixed
“cycle” or : probability of being selected
“sweep” New configuration
<«—noves per cycle il “block”
Move each atom T
Add to block sum 100’sor 1000's .
onee (On average) «—Cycles per block of CyC|eS Perform %I eCted trl al
: move
Compute block average Independent
: “measurement”
i’ blocks per simulation ,
Compute final results : T ,
> Decide to accept trial
configuration, or keep
origina




I1. Implementation of MMC in NVT Ensemble

II-7. Averages and Error Estimates
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B Equilibration period
The averages are evaluated after “equilibration period”

The equilibration period must be tested : cycle vs. properties

e Ex) 20000 run:
— 11010000 : equilibration period
— 10001 to 20 000 : averages are accumulated

B Error estimation

Error estimation based on different ssmulation runs (with different
Initial configurations)

Error estimation dividing total ssmulation runsinto several blocks
—>common method



I1. Implementation of MMC in NVT Ensemble

II-7. Averages and Error Estimates
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B Average and Error Estimates




II1. Implementation of MMC in other Ensembles

I11-1. Introduction
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B MMC in different ensembles
A very large number of systemsfor convenient calculation of time
average macroscopic properties
Common macroscopic attributes

* (N, V, E) : Microcanonica ensemble

(N, V, T):Canonical ensemble ——>  Nochange in N, Closed system

* (N, P, T). NPT ensemble

(1, V, T) . Grand canonical ensemble Change in N, Open system
Microcanonical ensemble cannot be used in MM C because
constant-kinetic energy constraint cannot be assumed

In thermodynamic limit all ensembles are equivalent and it is also
possible to transform between ensembles. The choice of ensemble
Is completely amatter of convenience (which property ?)



II1. Implementation of MMC in other Ensembles

I11-1. Introduction
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B Commonly encountered ensemble

Name All states of: Probability distribution | Schematic
: : : e O @0 )
Microcanonical given EVN w=x © (%
EV) o 00|° 00 W
: : A o 8| O )
Canonical al energies E(Ei):ée BE; |8@ O(% Q é%
(TVN)
) O
Isothermal-isobaric | all energiesand | 7(f,, 1) = 1 AEHPT) | @Y Sle
(TPN) volumes A & /&
Grand-canonical | all energiesand | (g, N.) = Lo AEFuN) | |0 © 8é’ 0
= -

(TVw) molecule numbers




II1. Implementation of MMC in other Ensembles

I11-1. Introduction
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B Partition functions and bridge equation

Ensemble Thermodynamic Partition Function Bridge Equation
Potential
Microcanonical Entropy, S Q:Z]_ Slk=InQ(E,V,N)
Canonical Helmholtz, A 0= Ze_ﬂEi —BA=InQ(T,V,N)
| sothermal-isobaric | Gibbs, G A= Ze—ﬂ(EﬁPVi) -G =InA(T,P,N)
Grand-canonical Hill, L =PV == N g AEAUN;) BPV =InZ(T,V,u)




II1. Implementation of MMC in other Ensembles

II1I-2. NVT Ensemble
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B Ensemble average : Boltzmann distribution as weighting factor

<A> _J‘exp{_ ’BU(FN)}A(rN)drN — ZA(Z) exp(E(l))
> exp(E())

- Zy (VN)
B Waeghted average
W (i) = exp(=BE (i)
1
Ay=—> A(i
(4) = 240
B For Other ensembles ? = Tricky technique used : “Pseudo Boltzmann Factor”
W (i) = exp(-pY)

for NVT ensemble, Y =E(i)



II1. Implementation of MMC in other Ensembles

I11-3. NPT Ensemble
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B Thermodynamic properties

_ I: exp(—pV)d V_[V A V) expl- U Y) Jdr
f: exp(—ppV)d VJV expl- BU (") Jdr

(4)

B V canchange
Particles are confined in fluctuating length L
Scaled coordinate :

a =r/L

integration over total volume - integration over unit cube Q

_ I: exp(—ppV)dv IQ A((Le)" V) expl- BU (L) V) }da”
J: exp(—ppV)dv _[Q exp{— LU((La)"™, V)}daN

(4)




II1. Implementation of MMC in other Ensembles

I11-3. NPT Ensemble
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B Pesude Boltzmann Factor

Y=pV+E(La)",L)-NkTInV

B Simple modification of NVT ensemble > Use AY instead of AU

B Volume fluctuation

NVT ensemble
* Move 1l moleculeat atime
» Calculate energies of remaining N-1 molecules
NPT ensemble
* ChangeinV affectsthe coordinates of all atoms
* N*N calculations are required
» Effective strategy : “ Scaling Method”

E = E(12)+ E(6)
0,

12 6
O ..
E = 4822[ ] —4822[”} 12 6
La, L) = pa2| e 1 pe]




II1. Implementation of MMC in other Ensembles

I11-3. NPT Ensemble
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W “ Scaling method” only applicableto relatively simple
model potential > Scalable potential

If not, N*(N-1) calculations are required for each volume
fluctuation

B Trial moves : Displacement and volume fluctuation
Displacement on each atoms
V olume change

B \When V change is attempted, long range correction must
be re-evaluated



II1. Implementation of MMC in other Ensembles

I11-3. uVT Ensemble

B Property average
A N N N
> eP(ANu) [, 40y expi- BU () Jar

()= ,

uvrT

Bu " =1og(N/V)+3log A

(4) > oAV’ ~InN) [ A yepl- BU G
A — n—0
VA

uvVT

Ho=u” +kTIn(N)

A2t



II1. Implementation of MMC in other Ensembles

I11-3. uVT Ensemble
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B The Pseudo Boltzmann Factor

Y =—Nu +kTINNHE(")

B Attempted Trial Moves
Particle displacement
Particle insertion
Particle deletion



