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I-1. Introduction

 Overview of Molecular Monte Carlo Method

I. Theoretical Basis of Molecular Monte Carlo Method

Objective

Calculation of Macroscopic
Properties from Microscopic

Properties (intermolecular
forces…)

Averaging Method

Ensemble Averages

NVT Ensemble
NPT Ensemble
μPT Ensemble

Generation of Random 
Configurations

Use of Random Number
Importance Sampling

Markov Chain
Metropolis Algorithm

Approximations

Periodic Boundary Condition
Minimum Image Convention

Long Range Correction
Neighborhood List



I-2. Averaging Method

 Statistical Mechanics : Theoretical Basis for derivation of 
macroscopic behavior from microscopic properties 

 Configuration : position and momenta  (rN and pN)
 Configurational Variable : A(rN , pN)
 Ensemble average 

 Weighted sum over all possible members of ensemble 
 Using classical mechanics 

I. Theoretical Basis of Molecular Monte Carlo Method
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I-2. Averaging Method

 Separation of Energy 
 Total energy is sum of kinetic and potential parts

 Kinetic parts can be treated separately from potential parts 

I. Theoretical Basis of Molecular Monte Carlo Method

)()(),( NNNN rUpKprE +=

=
i

ii
N mppK 2/)( 2

{ }

{ }

N
N

NN
N

NN

i
ii

N
N

Z

rUdr
N

rUdrmpdp
Nh

Q

11

)(exp
!

11

)(exp)2/exp(
!

1

3

3

2
3

Λ
=

−
Λ

=

−−=



 

β

ββ

ZN



I-2. Averaging Method

 Ensemble Average of a property 

 Monte Carlo Simulation calculates excess thermodynamic 
properties that result in deviation from ideal gas behavior

 Metropolis Monte Carlo Method  

I. Theoretical Basis of Molecular Monte Carlo Method
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I-3. General MMMC Scheme

I. Theoretical Basis of Molecular Monte Carlo Method

Start 

Generate initial configuration

Calculate Energy  (2.2)

Trial Move
Acceptance Criteria (2.5)

Calculate Summation of Properties

Average Properties

End

Loop
Ncycles

Random Number Generator (2.1)

PBC and MIC (2.3)

Importance Sampling 
(Metropolis Algorithm)



II-1. Random Number Generation

 There is nothing like “Random number generator “ 
 “Pseudo Random Number Generator “
 Most of the pseudo random number generator repeats “sequence” 
 It is important to know how long is the sequence 

 Most FORTRAN, C compiler supplies random number 
generator based on Linear Congruental Method
 The relationship will repeat when n greater than 32767

II. Implementation of MMC in NVT Ensemble 
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II-1. Random Number Generation

 RANDU Algorithm 
 1960’s , IBM 

 This generator was found to have serious problem : “The 
Marsaglia Effect”

 Improving the behavior of random number generator
 Two initial seed can extend the period grater than m 

II. Implementation of MMC in NVT Ensemble 
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II-1. Random Number Generation

 Using Random number generators
 Check the period 
 Serial Test :   (x,y) or (x,y,z) 
 Be careful about dummy argument 

• Use different dummy argument for two different set of random 
numbers

• Compiler’s optimizer is trying to remove multiple calls to random 
number generator 

II. Implementation of MMC in NVT Ensemble 

X = RAND(IDUM) + RAND(IDUM)

X = 2.0 * RAND(IDUM)

DO 1 I = 1,100
X = RAND(IDUM)

1  CONTINUE

Not evaluating every steps
Evaluated only once

You have to change
dummy argument 

each calls



II-1. Random Number Generation

 Initializing Configuration  (Example : 2D Space)

II. Implementation of MMC in NVT Ensemble 

bx = rLx/float(nx)
by = rLy/float(ny)
do  60  ip= 1, np

x(ip) = ( 0.5*(1.-float(nx)) +
float(mod( ip-1, nx )) )*bx 
y(ip) = ( 0.5*(1.-float(ny)) +
float((ip-1)/nx) )*by

60 continue X
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bx = rLx/float(nx)
by = rLy/float(ny)
do  60  ip= 1, np

x(ip) = ( 0.5*(1.-float(nx)) +
float(mod( ip-1, nx ))+0.1*r2() )*bx 
y(ip) = ( 0.5*(1.-float(ny)) +
float((ip-1)/nx) +0.1*r2())*by

60 continue
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II-2. Calculating Potential Energy

 Potential Energy of N-interacting particles
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Effect of external field

Two-body interaction 

Three-body interaction 

II. Implementation of MMC in NVT Ensemble 



II-2. Calculating Potential Energy

 Typically, effect of external field is zero 
 Two body interaction is the most important term in the 

calculations 
 Truncated after second term 

 For some cases, three body interactions may be important
 Including three body interactions imposes a very large 

increase in computation time 
 Short range and long range interactions

 Short range : Dispersion and Repulsion 
 Long range : Ionic interaction 

• Special methods are required for long range interactions due to 
limited size of simulation box

mNt ∝

II. Implementation of MMC in NVT Ensemble 



II-2. Calculating Potential Energy

 Naïve calculation 
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Summations are chosen to avoid duplicated evaluation and
“self” interaction

Loop i = 1, N-1
Loop j = i+1,N 

Evaluate rij
Evaulate Uij

Accumulate Energy
End j Loop

End j Loop

Pseudo Code

DO 10 I = 1, N
DO 20 J = I+1, N

DX = X(I)-X(J)
DY = Y(I)-Y(J)
RIJ2 = DX*DX + DY*DY 
RIJ6 = RIJ2*RIJ2*RIJ2 
RIJ12 = RIJ6*RIJ6

UTOT = UTOT + 1/RIJ12 – 1/RIJ6
20  CONTINUE
10  CONTINUE

FORTRAN Code
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II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Problems
 Simulations are performed typically with a few hundred molecules 

arranged in a cubic lattice  computational limitation
• Large fraction of the molecules can be expected in a surface rather 

than in the bulk 
 Simulation require summation over almost infinite interactions 
 PBC (Periodic Boundary Condition) and MIC (Minimum Image 

Convention) are used to avoid this problems

II. Implementation of MMC in NVT Ensemble 



II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Periodic Boundary Condition
 Infinite replica of the simulation box
Molecules on any lattice have mirror 

image counter parts in all the other 
boxes

 Changes in one box are matched 
exactly in the other box  surface 
effects are eliminated 

II. Implementation of MMC in NVT Ensemble 



II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Minimum Image Convention

 Summation over infinite array of 
periodic image  impossible 

 For a given molecule, we position 
the molecule at the center of a 
box with dimension identical to 
simulation box 

 Assume that the central 
molecules only interacts with all 
molecules whose center fall 
within this region 

II. Implementation of MMC in NVT Ensemble 

Nearest images of colored sphere



II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Implementing PBC
 Decision based : IF statement
 Function based : rounding , truncation, modulus 

II. Implementation of MMC in NVT Ensemble 

BOXL2 = BOXL/2.0 
IF(RX(I).GT.BOXL2) RX(I)=RX(I)-BOXL
IF(RX(I).LT.-BOXL2) RX(I) = RX(I) + BOXL

RX(I) = RX(I) – BOXL * AINT(RX(I)/BOXL)

Decision Function



II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Implementing PBC and MIC

II. Implementation of MMC in NVT Ensemble 

Loop i = 1, N -1
Loop j = I + 1, N 

Evaluate rij
Convert rij to its periodic image (rij’) 
if (rij’ < cutOffDistance) 

Evaluate U(rij)
Accumulate Energy 

End if
End j Loop

End i Loop 

Pseudo CODE 

do  10  ip= 1, Np-1
xip = x(ip)
yip = y(ip)
do  20  jp= ip+1, Np
xx = xip - x(jp)
dx = dble( xx - rLx*anint( xx/rLx ) )
yy = yip - y(jp)
dy = dble( yy - rLy*anint( yy/rLy ) )
rij2 = dx*dx + dy*dy
if  ( rij2 .lt. dcut2 )  then

rij6  = 1.d0/(rij2*rij2*rij2)
rij12 = rij6*rij6
ham = ham +      rij12 - rij6 
pre = pre + 2.d0*rij12 - rij6 

endif
20   continue
10 continue

FORTRAN CODE 



II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Features due to PBC and MIC
 Accumulated energies are calculated for the periodic separation distance
 Only molecules within cut-off distance contributed to calculated energy
 Caution : Cut-off distance should be smaller than the size of simulation box  

if not, violation to MIC 
 Calculated potential = truncated potential

 Long range correction 

 For NVT ensemble No. of particle and density (V) are const. 
• LRC can be added after simulation

 For other ensembles, LRC must be added during the simulation

II. Implementation of MMC in NVT Ensemble 
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II-4. Neighborhood List

 In 1967, Verlet proposed a new algorithm to reduce 
computation time

 Instead of searching for neighboring molecules, the neighbors 
of the molecules are stored and used for the calculation

 Variable d is used to encompass slightly outside the cut-off 
distance

 Update of the list
 update of the list / 10-20 steps
 Largest displacement exceed d value

II. Implementation of MMC in NVT Ensemble 



II-5. Metropolis Sampling Algorithm

 Average of a property 

 There are a lot of choice to make Markov process that 
follows a given PDF 

II. Implementation of MMC in NVT Ensemble 
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II-5. Metropolis Sampling Algorithm

 In 1953, Metropolis showed a transition probability matrix 
exists than ensures that the PDF is obeyed 

 Other choice can also satisfies condition of microscopic 
reversibility (Barker , 1965)

II. Implementation of MMC in NVT Ensemble 
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II-5. Metropolis Sampling Algorithm

 Metropolis Recipe 
 with probability πmn a trial state j for the move
 if ρn > ρm accept n as new state
 Otherwise, accept n as the new state with probability ρn > ρm

• Generate a random number R on (0,1) and accept if R <  ρn /ρm

 If not accepting n as new state, take the present state as the next 
one in Markov chain (πmn ≠ 0) 

 What is the value of α ? 

II. Implementation of MMC in NVT Ensemble 

 acceptingnot  if                         0
 accepting if                   1

=
=

mn

Rmn /N
α
α

  trialsaccepted ofNumber  : RN



II-6. Implementation

Start 

Generate initial configuration

Generate trial displacement 

Calculate the change in energy
ΔE = E trial - Eatom

Apply Metropolis Algorithm 
if ΔE <0 or exp(-βΔE) >= rand() then accept move

else reject move

Update periodically maximum displacement, dMax 

Calculate Properties
Calculate Error Estimates

End

Loop Ncycle

Loop Natoms

rTrial = PBC(r + (2*rand()-1)*dMax)

r=rnew 
E = E+ΔE

nAccept = nAccept

if (acceptRatio > 0.5) 
dMax = 1.05*dMax

else 
dMax = 0.95*dMax

II. Implementation of MMC in NVT Ensemble 



II-6. Implementation

Initialization

Reset block sums

Compute block average

Compute final results

“cycle” or 
“sweep”

“block”
Move each atom 
once (on average) 100’s or 1000’s 

of cycles

Independent 
“measurement”

moves per cycle

cycles per block

Add to block sum

blocks per simulation

New configuration

New configuration

Entire Simulation
Monte Carlo Move

Select type of trial move
each type of move has fixed 
probability of being selected

Perform selected trial 
move

Decide to accept trial 
configuration, or keep 

original

II. Implementation of MMC in NVT Ensemble 



II-7. Averages and Error Estimates

 Equilibration period 
 The averages are evaluated after “equilibration period”
 The equilibration period must be tested : cycle vs. properties

• Ex) 20 000 run :
– 1 to 10 000 : equilibration period
– 10 001 to 20 000 : averages are accumulated 

 Error estimation
 Error estimation based on different simulation runs (with different 

initial configurations)
 Error estimation dividing total simulation runs into several blocks

common method 

II. Implementation of MMC in NVT Ensemble 



II-7. Averages and Error Estimates

 Average and Error Estimates 
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III-1. Introduction 

 MMC in different ensembles 
 A very large number of systems for convenient calculation of time 

average macroscopic properties
 Common macroscopic attributes

• (N, V, E) : Microcanonical ensemble
• (N, V, T) : Canonical ensemble
• (N, P, T) :  NPT ensemble
• (μ, V, T) : Grand canonical ensemble

 Microcanonical ensemble cannot be used in MMC because 
constant-kinetic energy constraint cannot be assumed  

 In thermodynamic limit all ensembles are equivalent and it is also 
possible to transform between ensembles. The choice of ensemble 
is completely a matter of convenience (which property ?) 

III. Implementation of MMC in other Ensembles 

No change in N , Closed system

Change in N , Open  system



III-1. Introduction 

III. Implementation of MMC in other Ensembles 

 Commonly encountered ensemble 

Name All states of: Probability distribution Schematic

Microcanonical
(EVN)

given EVN 1
iπ Ω=

Canonical
(TVN)

all energies 1( ) iE
i QE e βπ −=

Isothermal-isobaric
(TPN)

all energies and
volumes

( )1( , ) i iE PV
i iE V e βπ − +

Δ=

Grand-canonical
(TVμ)

all energies and
molecule numbers

( )1( , ) i iE N
i iE N e β μπ − +

Ξ=



III-1. Introduction 

III. Implementation of MMC in other Ensembles 

 Partition functions and bridge equation

Ensemble Thermodynamic
Potential

Partition Function Bridge Equation

Microcanonical Entropy, S 1Ω = / ln ( , , )S k E V N= Ω

Canonical Helmholtz, A iEQ e β−= ln ( , , )A Q T V Nβ− =

Isothermal-isobaric Gibbs, G ( )i iE PVe β− +Δ = ln ( , , )G T P Nβ− = Δ

Grand-canonical Hill, L = –PV ( )i iE Ne β μ− +Ξ = ln ( , , )PV T Vβ μ= Ξ



III-2. NVT Ensemble 

III. Implementation of MMC in other Ensembles 

 Ensemble average :  Boltzmann distribution as weighting factor

 Weighted average  

 For Other ensembles ?  Tricky technique used : “Pseudo Boltzmann Factor”
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III-3. NPT Ensemble 

III. Implementation of MMC in other Ensembles 

 Thermodynamic properties 

 V can change 
 Particles are confined in fluctuating length L
 Scaled coordinate :

 integration over total volume  integration over unit cube Ω
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III-3. NPT Ensemble 

III. Implementation of MMC in other Ensembles 

 Pesude Boltzmann Factor 

 Simple modification of NVT ensemble Use ΔY instead of ΔU
 Volume fluctuation

 NVT ensemble 
• Move 1 molecule at a time
• Calculate energies of remaining N-1 molecules 

 NPT ensemble
• Change in V affects the coordinates of all atoms 
• N*N calculations are required 
• Effective strategy : “Scaling Method”
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III-3. NPT Ensemble 

III. Implementation of MMC in other Ensembles 

 “Scaling method” only applicable to relatively simple 
model potential   Scalable potential 
 if not, N*(N-1) calculations are required for each volume 

fluctuation 
 Trial moves : Displacement and volume fluctuation 

 Displacement on each atoms
 Volume change 

 When V change is attempted, long range correction must 
be re-evaluated 



III-3. μVT Ensemble 

III. Implementation of MMC in other Ensembles 

 Property average
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III-3. μVT Ensemble 

III. Implementation of MMC in other Ensembles 

 The Pseudo Boltzmann Factor 

 Attempted Trial Moves 
 Particle displacement
 Particle insertion
 Particle deletion 

)(!ln* NrENkTNY ++−= μ


