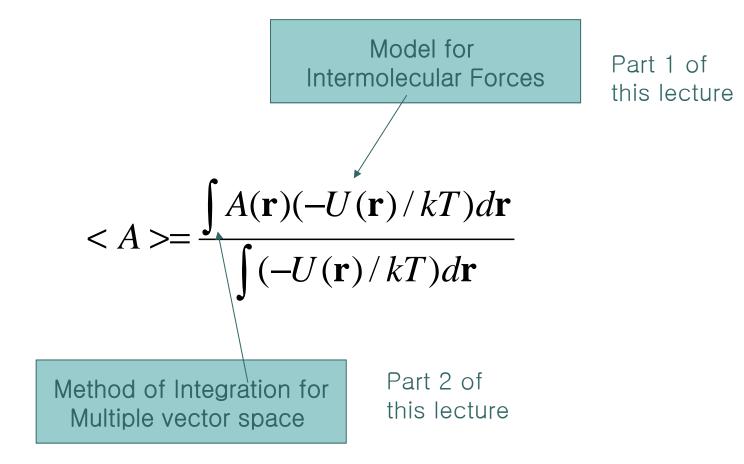


#### 열역학 특수 연구 2003.3.28

## ••• *Source of the lecture note.*

- J.M.Prausnitz and others, "Molecular Thermodynamics of Fluid Phase Equiliria"
- **Atkins, "Physical Chemistry"**
- **Lecture Note, Prof. D.A.Kofke, University at Buffalo**
- **Lecture Note, R.J.Sadus, Swineburn University**

#### • • • Tasks of Molecular Simulation



## • • • Intermolecular Forces

#### Intermolecular forces

- Force acting between the molecules of given mixture or pure species
- It is essential to understand the nature of intermolecular forces for the study of molecular simulation
- Only simple and idealized models are available (approximation)
- Our understanding of intermolecular forces are far from complete.

## • • • *Types of intermolecular forces*

**D** Electrostatic forces

- Charged particles and permanent dipoles
- Induced forces
  - Permanent dipole and induced dipole
- Force of attraction between nonpolar molecules
- **Specific forces** 
  - Hydrogen bonding, association and complex formation

Potential Energy : Energy due to relative position to one another

$$F = -\frac{d\Gamma}{dr}$$

If additional variables are required for potential energy function ...

$$F(r,\theta,\phi,\ldots) = -\nabla\Gamma(r,\theta,\phi,\ldots)$$

## ••• *1. Electrostatic Force*

- **Due to permanent charges (ions,...)**
- **Coulomb's relation (inverse square law)** 
  - Two point charges separated from distance r

$$F = \frac{e_i e_j}{r^2}$$
  $F = -\frac{d\Gamma}{dr}$   $\Gamma_{ij} = \frac{e_i e_j}{r} + const.$ 

**For two charged molecules (ions)**,

$$\Gamma_{ij} = \frac{z_i z_j \varepsilon^2}{Dr}$$

Dielectric constant of given medium

## ••• *Nature of Electrostatic forces*

- **Dominant contribution of energy ....**
- **D** Long range nature
  - Force is inversely proportional to square of the distance
  - Major difficulties for concentrated electrolyte solutions

# ••• *Electrostatic forces between dipoles*

#### **Dipole**

- Particles do not have net electric charge
- Particles have two electric charges of same magnitude *e* but opposite sign.
- **Dipole moment**  $\mu = el$
- **D** Potential Energy between two dipoles

(a) 
$$q_2 - q_2$$
  
 $\Gamma_{ij} = \frac{\mu_i \mu_j}{r^3} \left[ 2\cos\theta_i \cos\theta_j - \sin\theta_i \sin\theta_j \cos(\phi_i - \phi_j) \right]$ 

# ••• *Energies of permanent dipole, quadrupoles*

- Orientations of molecules are governed by two competing factors
  - Electric field by the presence of polor molecules
  - Kinetic energy  $\rightarrow$  random orientation
- **Dipole-Dipole**

$$\Gamma_{ij} = -\frac{2}{3} \frac{\mu_i^2 \mu_j^2}{r^6 kT} + \dots$$

- **Dipole-Quadrupole**  $\Gamma_{ij} = -\frac{\mu_i^2 Q_j^2}{r^8 kT} + \dots$
- **Quadrupole-Quadrupole**  $\Gamma_{ij} = -\frac{Q_i^2 Q_j^2}{40r^{10}kT} + \dots$

### • • • 2. Induced Forces

Nonpolar molecules can be induced when those molecules are subjected to an electric field.

$$\mu^{i} = \alpha E$$
Electric Field Strength
Polarizability

## •••• *Mean Potential Energies of induced dipoles*

**Permanent Dipole + Induced Dipole** 

$$\Gamma_{ij} = -\frac{\alpha_i \mu_j^2}{r^6}$$

**Permanent Dipole + Permanent Dipole** 

$$\Gamma_{ij} = -\frac{\left(\alpha_i \mu_j^2 + \alpha_j \mu_i^2\right)}{r^6}$$

**Permanent Quadrupole + Permanent Quadrupole** 

$$\Gamma_{ij} = -\frac{3(\alpha_i Q_j^2 + \alpha_j Q_i^2)}{2r^8}$$

#### • • • 3. Intermolecular Forces between Nonpolar Molecules

#### **1930, London**

- There was no adequate explanation for the forces between nonpolar molecules
- Instant oscillation of electrons → Distortion of electron arrangement was sufficient to caus temporary dipole moment
- On the average, the magnitude and direction averages zero, but quickly varying dipoles produce an electric field. → induces dipoles in the surrounding molecules
- Induced dipole-induced dipole interaction

## ••• *London dispersion force*

$$\Gamma_{ij} = -\frac{3}{2} \frac{\alpha_i \alpha_j (I_i I_j)}{r^6 (I_i + I_j)}$$

Potential energy between two nonpolar molecules are :

independent of temperature and

varies inversely as sixth power of the distance between them .

$$\Gamma_{ii} = -\frac{B}{r^6}$$
  $\Gamma_{ij} = \sqrt{\Gamma_{ii}\Gamma_{jj}}$ 

## •••• *Repulsive force and total interaction*

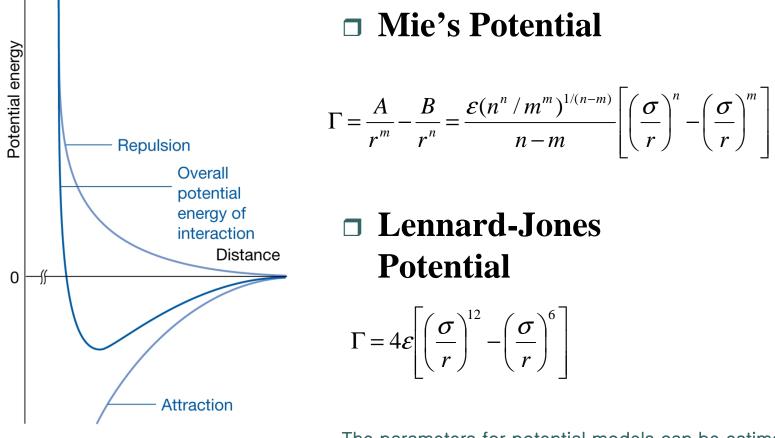
- When molecules are squeezed, electronic replusion and rising of eletronic kinetic energy began to dominate the attractive force
- The repulsive potential can be modeled by inverse-power law

$$\Gamma = \frac{A}{r^m}$$

**The total potential is the sum of two separate potential** 

$$\Gamma_{ij} = \frac{A}{r^m} - \frac{B}{r^n}$$

## ••• General form of intermolecular potential curve

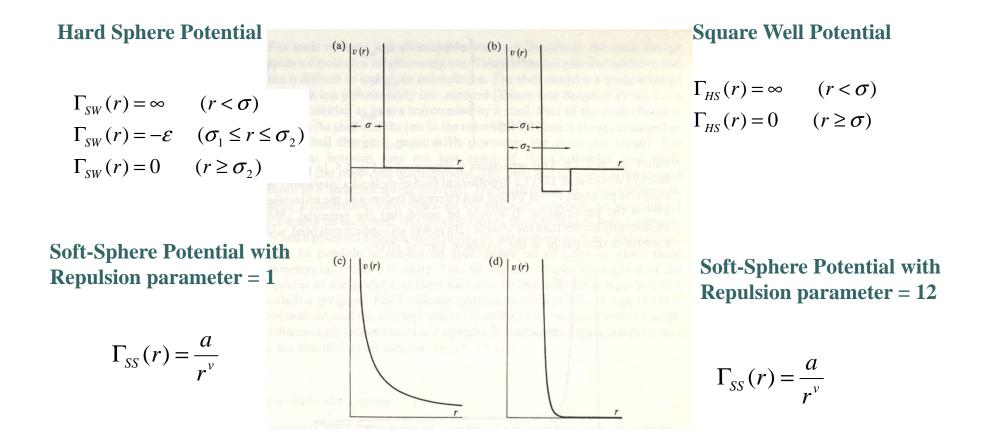


The parameters for potential models can be estimated from variety of physical properties (spectroscopic and molecular-beam experiments)

# ••• Specific (Chemical) Forces

- **□** Association : The tendency to from polymer
- Solvation : The tendency to form complexes from different species
- Hydrogen Bond and Electron Donor-Acceptor complexes
- **The models for specific forces are not well established.**
- □ The most important contribution in bio-molecules (proteins, DNA, RNA,...)

### 



#### •••• *Calculation of Potential in Molecular Monte Carlo Simulation*

- There are no contribution of kinetic energy in MMC simulation
  - Only "configurational" terms are calculated

$$U = \sum \Gamma_1(r_i) + \sum \sum \Gamma_2(r_i, r_j) + \sum \sum \sum \Gamma_3(r_i, r_j, r_k) + \dots$$
  
Potential between particles of triplets  
Potential between pairs of particles

Effect of external field

## • • • Using reduced units...

Dimensionless units are used for computer simulation purposes

$$\rho^* = \rho\sigma^3$$
$$T^* = kT/\varepsilon$$
$$E^* = E/\varepsilon$$
$$P^* = P\sigma^3/\varepsilon$$

# ••• *Contribution to Potential energy*

- Two-body interactions are most important term in the calculation
- **For some cases, three body interactions may be important.**
- Including three body interactions imposes a very large increase in computation time.

$$t \propto N^m$$

**m: number of interactions** 

### • • • Short range and long range forces

#### **Short range force**

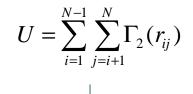
- Dispersion and Replusion
- **Long range force** 
  - Ion-Ion and Dipole-Dipole interaction

| Interaction Type | Dependence       | Typical E | Comment    |
|------------------|------------------|-----------|------------|
|                  |                  | (kJ/mol)  |            |
| Ion-Ion          | 1/r              | 250       |            |
| Ion-Dipole       | 1/r <sup>2</sup> | 15        |            |
| Dipole-Dipole    | 1/r <sup>3</sup> | 2         | Stationary |
| Dipole-Dipole    | 1/r <sup>6</sup> | 0.6       | Rotating   |
| London           | 1/r <sup>6</sup> | 2         |            |

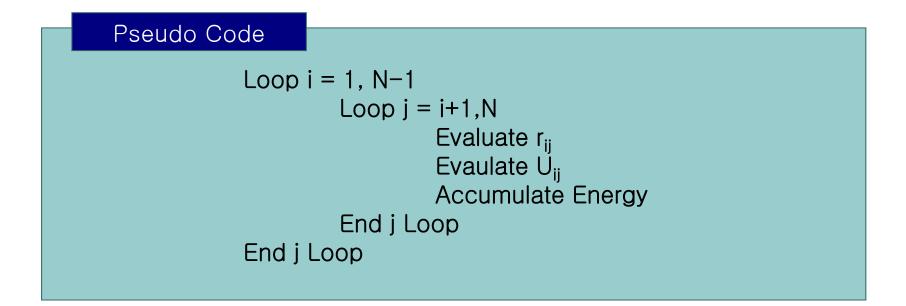
### ••• Short range and long range interactions

- Computation time-saving devices for short range interactions
  - Periodic boundary condition
  - Neighbor list
- Special methods are required for long range interactions. (The interaction extends past the length of the simulation box)

#### • • Naïve energy calculation



Summation are chosen to avoid "self" interaction



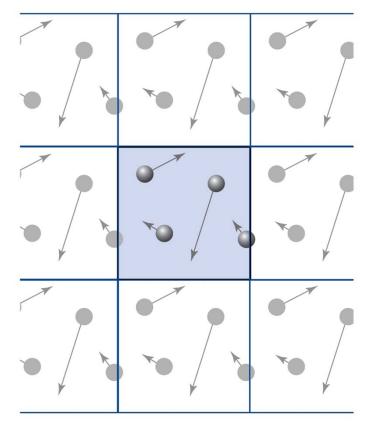
## • • • Problems

Simulations are performed typically with a few hundred molecules arranged in a cubic lattice.

• Large fraction of molecules can be expected at the surface rather than in the bulk.

Periodic Boundary Conditions (PBC) are used to avoid this problem

#### • • • Periodic Boundary Condition



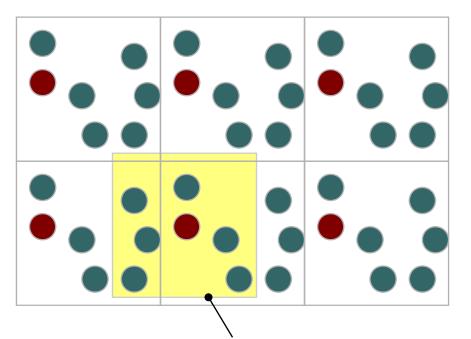
- Infinite Replica of the lattice of the cubic simulation box
- Molecules on any lattice have a mirror image counter part in all the other boxes
- □ Changes in one box are matched exactly in the other boxes → surface effects are eliminated.

## • • • Another difficulty...

Summation over infinite array of periodic images

 → This problem can be overcame using Minimum Image Convention (MIC)

## ••• *Minimum Image Convention* (*MIC*)



For a given molecule, we position the molecule at the center of a box with dimension identical to the simulation box.

Assume that the central molecule only interacts with all molecules whose <u>center fall within this</u> <u>region.</u>

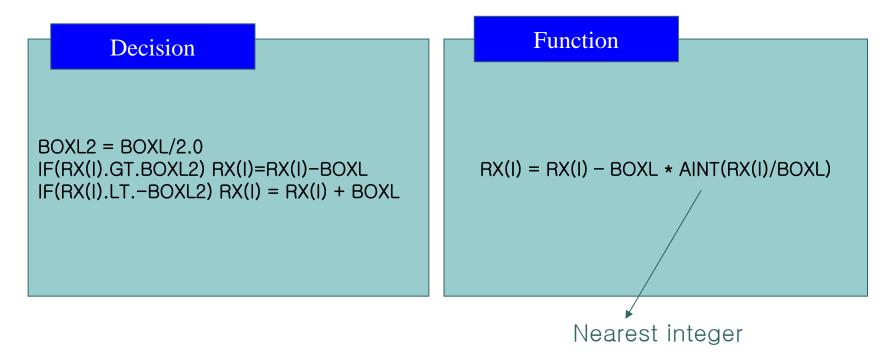
All the coordinates lie within the range of  $\frac{1}{2} L$  and  $-\frac{1}{2} L$ 

Nearest images of colored sphere

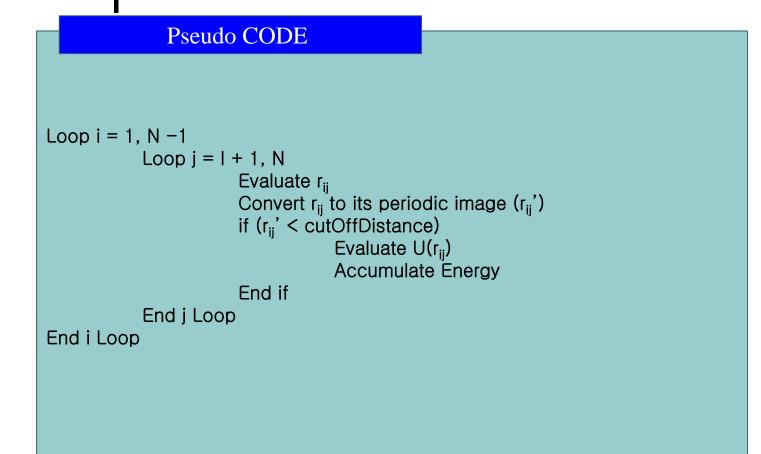
### • • • Implementing PBC & MIC

#### **Two Approaches**

- Decision based : if statement
- Function based : rounding, truncation, modulus



#### • • • Implementing PBC & MIC



#### • • • Improvement due to PBC & MIC (Compared with naïve calculation)

- Accumulated energies are calculated for the periodic separation distance.
- Only molecules within cut-off distance contribute to the calculated energy.
- □ Caution : cut-off distance should be smaller than the size of the simulation box → Violation to MIC
- □ Calculated potential → Truncated potential

### • • • Long range correction to PCB

#### **□** Adding long range correction...

 $X_{full} = X_c + X_{lrc}$ 

$$E_{lrc} = 2\pi N \rho \int_{r_c}^{\infty} r^2 u(r) dr$$

For NVT ensemble, density and no. of particles are const. →LRC and be added <u>after simulation</u> For other ensembles, LRC terms must be added <u>during simulation</u>

## ■ ■ Technique to reduce computation time → Neighbor List

- **1967, Verlet proposed a new algorithm.**
- Instead of searching for neighboring molecules, the neighbor of the molecules are stored and used for the calculation.

# ••• *Neighbor List*

| Part 1            | $topOfList \leftarrow 0$ //start with empty list                                                        |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Part 1.1          | <b>loop</b> $i \leftarrow 1 \dots N - 1$ //select molecule $i$                                          |  |  |
|                   | $listEntry_i \leftarrow 0$                                                                              |  |  |
| Part 2            | <b>loop</b> $j \leftarrow i + 1 \dots N$ //look for neighbours of $i$                                   |  |  |
| Part 2.1          | Evaluate <i>rx<sub>ii</sub>, ry<sub>ii</sub></i> and <i>rz<sub>ii</sub></i> .                           |  |  |
|                   | Evaluate periodic images ( <i>rx<sub>ii</sub></i> , <i>ry<sub>ii</sub></i> and <i>rz<sub>ii</sub></i> ) |  |  |
|                   | $r^2 \leftarrow rx_{ii}^{\prime 2} + ry_{ii}^{\prime 2} + rz_{ii}^{\prime 2}$                           |  |  |
| Part 2.2          | if $(r^2 < (rCut^2 + d))$ //neighbour found                                                             |  |  |
|                   | $topOfList \leftarrow topOfList + 1$                                                                    |  |  |
|                   | <i>listEntry<sub>i</sub>← topOfList</i> //position of <i>j</i> on list                                  |  |  |
|                   | $list_{topOfList} \leftarrow j$ //enter j on list                                                       |  |  |
| end if            |                                                                                                         |  |  |
| end <i>j</i> loop |                                                                                                         |  |  |
|                   | end <i>i</i> loop                                                                                       |  |  |

### • • • Neighbor List

 Variable d is used to encompass molecules slightly outside the cut-off distance (buffer).

- **Update of the list** 
  - Update of the list per 10-20 steps
  - Largest displacement exceed d value.

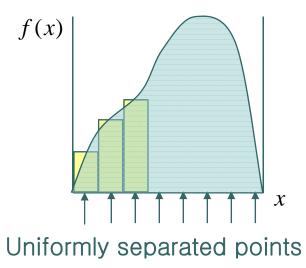
## • • • *Algorithm for Integration*

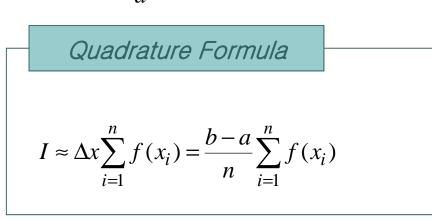
## ••• *Method of Integration*

### Methodological Approach

• Rectangular Rule, Triangular Rule, Simpson's Rule

$$I = \int_{a}^{b} f(x) dx$$

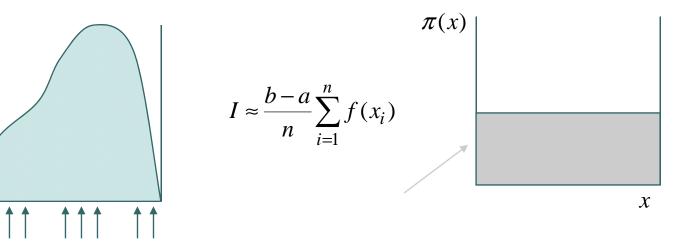




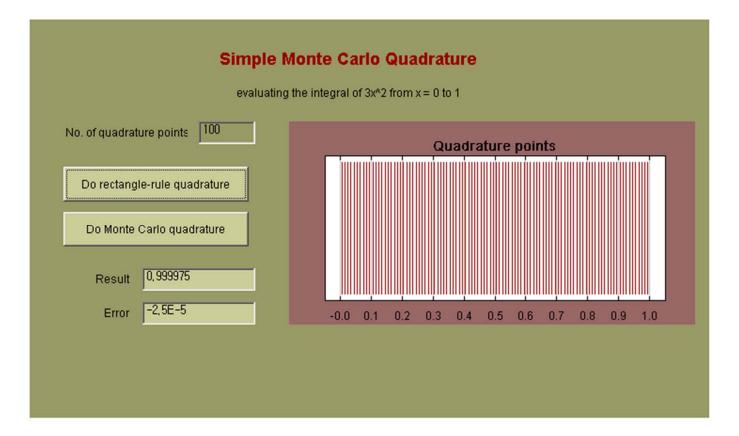
# ••• *Monte Carlo Integration*

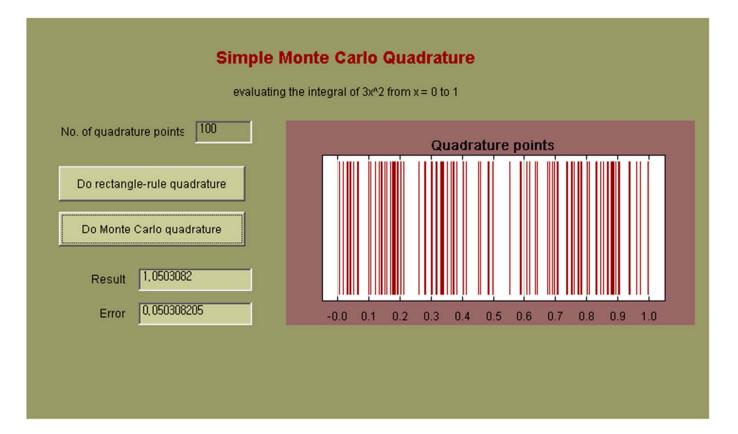
### **Stochastic Approach**

Same quadrature formula, different selection of points



Points are selected from uniform distribution  $\pi(x)$ 





# ••• Why Monte Carlo Integration ?

**Comparison of errors** 

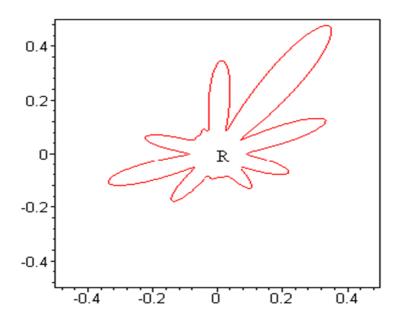
- Methodological Integration  $E \propto \Delta x^2 / n^2$
- Monte Carlo Integration  $E \propto 1/n^{1/2}$
- **MC** error vanishes much slowly for increasing n
- For one-dimensional integration, MC offers no advantage
- The conclusion changes when dimension of integral increases
  - Methodological Integration  $E \propto \Delta x^2 / n^{2/d}$
  - Monte Carlo Integration

 $E \propto 1/n^{1/2}$ 

<u>MC "wins" about d = 4</u>

### Shape of High Dimensional Region

- Two (and Higher) dimensional shape can be complex
- How to construct weighted points in a grid that covers the region R ?



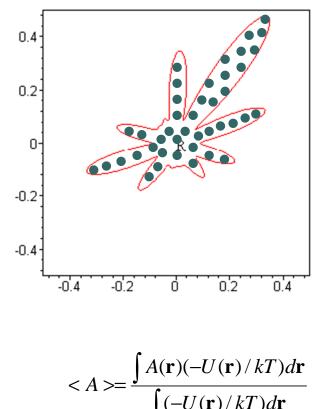
Problem:

mean-square distance from the origin

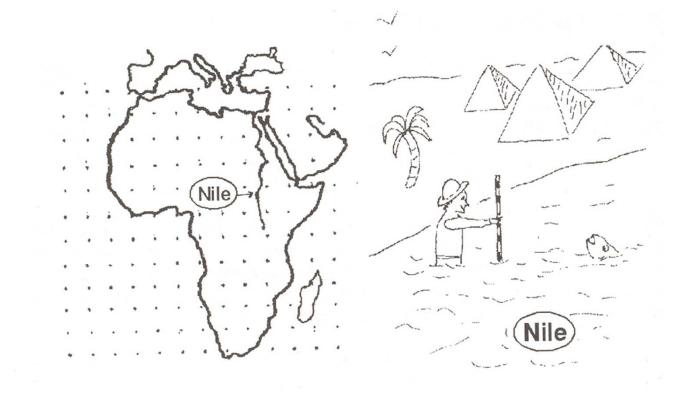
$$< r^{2} >= \frac{\int \int (x^{2} + y^{2}) dx dy}{\int \int dx dy}$$

### •••• Shape of High Dimensional Integral

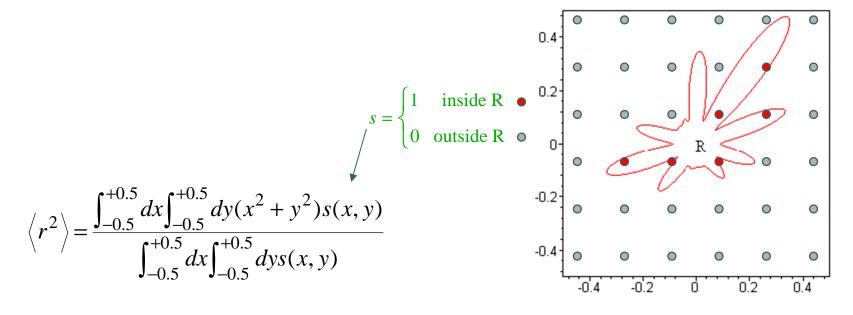
- It is hard to formulate methodological algorithm in complex boundary
- Usually we do not have analytical expression for position of boundary
- Complexity of shape can increase unimaginably as dimension of integral grows
- We want 100 + dimensional integrals



### • • • Nature of the problem ...

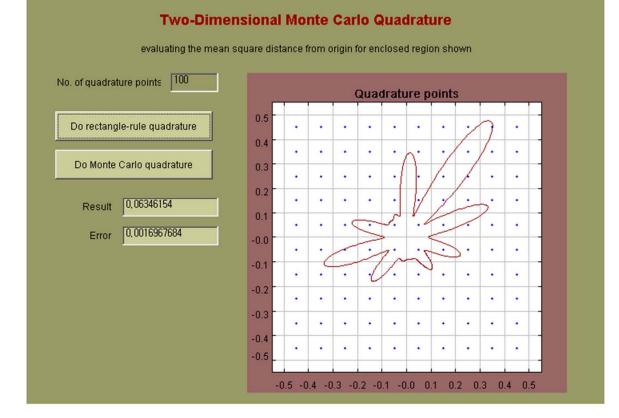


## ••• Integration over simple shape ?

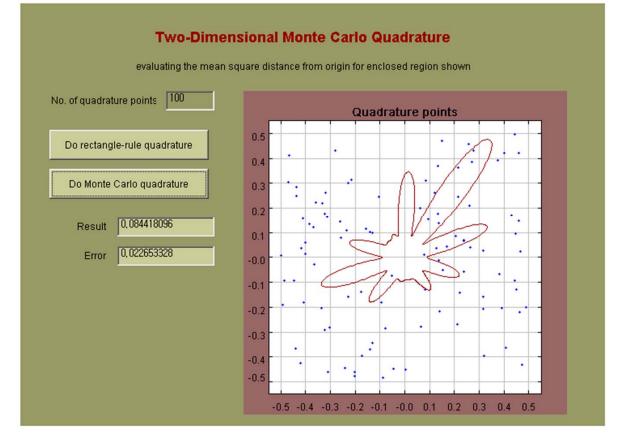


Grid must be fine enough !

### ••• Sample Integration

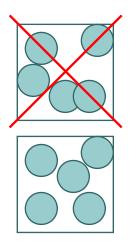


## ••• Sample Integration



## ••• Integration over simple shape ?

- Statistical mechanics integrals typically have significant contribution from miniscule regions of the integration space.
- **Ex** ) 100 spheres at freezing fraction =  $10^{-260}$

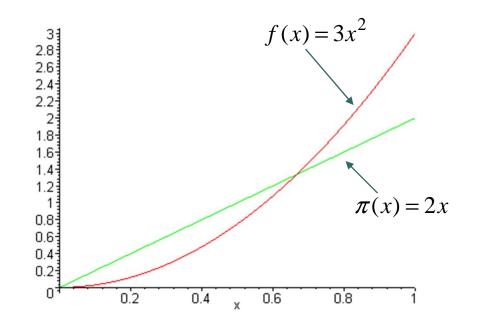


# ••• *Importance Sampling*

Put more quadrature points in the region where integral recieves its greatest contribution

Choose quadrature points according to some distribution function.

### • • • *A sample integration.*



### ••• *Importance Sampling Integral*

### **Using Rectangular-Rule :**

• Use unevenly spaced intervals

$$I \approx \sum_{i=1}^{n} f(x_i) \Delta x_i$$

$$\Delta x_i = \frac{b-a}{n} \frac{1}{\pi(x_i)}$$

