

열역학 특수 연구 **2003.3.28**

Source of the lecture note.

- \Box **J.M.Prausnitz and others, "Molecular Thermodynamics of Fluid Phase Equiliria"**
- \Box **Atkins, "Physical Chemistry"**
- \Box **Lecture Note, Prof. D.A.Kofke, University at Buffalo**
- \Box **Lecture Note, R.J.Sadus, Swineburn University**

Tasks of Molecular Simulation

Intermolecular Forces

\Box **Intermolecular forces**

- \bullet **Force acting between the molecules of given mixture or pure species**
- **It is essential to understand the nature of intermolecular forces for the study of molecular simulation**
- **Only simple and idealized models are available (approximation)**
- **Our understanding of intermolecular forces are far from complete.**

Types of intermolecular forces

 \Box **Electrostatic forces**

- **Charged particles and permanent dipoles**
- **Induced forces**
	- **Permanent dipole and induced dipole**
- \Box **Force of attraction between nonpolar molecules**
- **Specific forces**
	- **Hydrogen bonding, association and complex formation**

Potential Energy Function and Intermolecular Forces

 Potential Energy : Energy due to relative position to one another

$$
F = -\frac{d\Gamma}{dr}
$$

 If additional variables are required for potential energy function …

$$
F(r, \theta, \phi, \ldots) = -\nabla \Gamma(r, \theta, \phi, \ldots)
$$

1. Electrostatic Force

- \Box **Due to permanent charges (ions,…)**
- **Coulomb's relation (inverse square law)**
	- **Two point charges separated from distance r**

$$
F = \frac{e_i e_j}{r^2} \qquad F = -\frac{d\Gamma}{dr} \qquad \Gamma_{ij} = \frac{e_i e_j}{r} + const.
$$

 \Box **For two charged molecules (ions) ,**

$$
\Gamma_{ij} = \frac{z_i z_j \mathcal{E}^2}{Dr}
$$

Dielectric constant of given medium

Nature of Electrostatic forces

- **Dominant contribution of energy ….**
- **Long range nature**
	- **Force is inversely proportional to square of the distance**
	- **Major difficulties for concentrated electrolyte solutions**

Electrostatic forces between dipoles

Dipole

- **Particles do not have net electric charge**
- **Particles have two electric charges of same magnitude** *e* **but opposite sign.**
- **Dipole moment** $μ = el$
- **Potential Energy between two dipoles**

(a)
$$
q_2 - q_2
$$

\n $\Gamma_{ij} = \frac{\mu_i \mu_j}{r^3} \Big[2 \cos \theta_i \cos \theta_j - \sin \theta_i \sin \theta_j \cos(\phi_i - \phi_j) \Big]$
\n $q_1 - q_1$

Energies of permanent dipole, quadrupoles

- \Box **Orientations of molecules are governed by two competing factors**
	- \bullet **Electric field by the presence of polor molecules**
	- \bullet • Kinetic energy \rightarrow random orientation
- \Box **Dipole-Dipole**

$$
\Gamma_{ij} = -\frac{2}{3} \frac{\mu_i^2 \mu_j^2}{r^6 kT} + \dots
$$

 $2 \sim 2$

 $2 \geq 2$

- \Box **Dipole-Quadrupole** 8_{1-T} ... $\Gamma_{ij} = -\frac{r^2L^2}{r^8kT} +$ $\int_i^2 Q_j$ *ij* μ_{I}
- \Box **Quadrupole-Quadrupole** $\Gamma_{ij} = -\frac{\mathcal{L}_i}{40r^{10}kT} + ...$ $\Gamma_{ij} = -\frac{Z_i Z_j}{40 r^{10} kT} +$ Q_{i} ² Q_{j} *ij*

2. Induced Forces

 Nonpolar molecules can be induced when those molecules are subjected to an electric field.

$$
\mu^{i} = \alpha E
$$
\nElectric Field Strength
\nPolarizability

Mean Potential Energies of induced dipoles

 \Box **Permanent Dipole + Induced Dipole**

$$
\Gamma_{ij} = -\frac{\alpha_i \mu_j^2}{r^6}
$$

 \Box **Permanent Dipole + Permanent Dipole**

$$
\Gamma_{ij} = -\frac{\left(\alpha_i \mu_j^2 + \alpha_j \mu_i^2\right)}{r^6}
$$

 \Box **Permanent Quadrupole + Permanent Quadrupole**

$$
\Gamma_{ij} = -\frac{3(\alpha_i Q_j^2 + \alpha_j Q_i^2)}{2r^8}
$$

3. Intermolecular Forces between Nonpolar Molecules

1930, London

- \bullet **There was no adequate explanation for the forces between nonpolar molecules**
- \bullet **Instant oscillation of electrons** \rightarrow **Distortion of electron arrangement was sufficient to caus temporary dipole moment**
- \bullet **On the average, the magnitude and direction averages zero, but quickly varying dipoles produce an electric field. induces dipoles in the surrounding molecules**
- \bullet **Induced dipole-induced dipole interaction**

London dispersion force

$$
\Gamma_{ij} = -\frac{3}{2} \frac{\alpha_i \alpha_j (I_i I_j)}{r^6 (I_i + I_j)}
$$

Potential energy between two nonpolar molecules are :

independent of temperature and

varies inversely as sixth power of the distance between them .

$$
\Gamma_{ii} = -\frac{B}{r^6} \qquad \qquad \Gamma_{ij} = \sqrt{\Gamma_{ii}\Gamma_{jj}}
$$

Repulsive force and total interaction

- \Box **When molecules are squeezed, electronic replusion and rising of eletronic kinetic energy began to dominate the attractive force**
- \Box **The repulsive potential can be modeled by inverse-power law**

$$
\Gamma = \frac{A}{r^m}
$$

 \Box **The total potential is the sum of two separate potential**

$$
\Gamma_{ij} = \frac{A}{r^m} - \frac{B}{r^n}
$$

General form of intermolecular potential curve

The parameters for potential models can be estimated from variety of physical properties (spectroscopic and molecular-beam experiments)

Specific (Chemical) Forces

- \Box **Association : The tendency to from polymer**
- \Box **Solvation : The tendency to form complexes from different species**
- \Box **Hydrogen Bond and Electron Donor-Acceptor complexes**
- \Box **The models for specific forces are not well established.**
- \Box **The most important contribution in bio-molecules (proteins, DNA, RNA,…)**

Simplified Potential Models for Molecular Simulations

Calculation of Potential in Molecular Monte Carlo Simulation

- \Box **There are no contribution of kinetic energy in MMC simulation**
	- **Only "configurational" terms are calculated**

$$
U = \sum \Gamma_1(r_i) + \sum \sum \Gamma_2(r_i, r_j) + \sum \sum \sum \Gamma_3(r_i, r_j, r_k) + ...
$$

Potential between particles of triplets
Potential between pairs of particles

Effect of external field

Using reduced units…

 \Box **Dimensionless units are used for computer simulation purposes**

$$
\rho^* = \rho \sigma^3
$$

\n
$$
T^* = kT / \varepsilon
$$

\n
$$
E^* = E / \varepsilon
$$

\n
$$
P^* = P \sigma^3 / \varepsilon
$$

Contribution to Potential energy

- \Box **Two-body interactions are most important term in the calculation**
- \Box **For some cases, three body interactions may be important.**
- \Box **Including three body interactions imposes a very large increase in computation time.**

$$
t \propto N^m
$$

m: number of interactions

Short range and long range forces

Short range force

- **Dispersion and Replusion**
- **Long range force**
	- **Ion-Ion and Dipole-Dipole interaction**

Short range and long range interactions

- **Computation time-saving devices for short range interactions**
	- **Periodic boundary condition**
	- **Neighbor list**
- **Special methods are required for long range interactions. (The interaction extends past the length of the simulation box)**

Naïve energy calculation

Summation are chosen to avoid "self" interaction

Problems

 Simulations are performed typically with a few hundred molecules arranged in a cubic lattice.

 \bullet **Large fraction of molecules can be expected at the surface rather than in the bulk.**

 Periodic Boundary Conditions (PBC) are used to avoid this problem

Periodic Boundary Condition $\bullet\bullet\bullet$

- \Box **Infinite Replica of the lattice of the cubic simulation box**
- \Box **Molecules on any lattice have a mirror image counter part in all the other boxes**
- \Box **Changes in one box are matched exactly in the other boxes surface effects are eliminated.**

Another difficulty…

 Summation over infinite array of periodic images

● → This problem can be overcame using **Minimum Image Convention (MIC)**

Minimum Image Convention (MIC)

For a given molecule, we position the molecule at the center of a box with dimension identical to the simulation box.

Assume that the central molecule only interacts with all molecules whose center fall within this region.

All the coordinates lie within therange of $\frac{1}{2}$ *L and* $-\frac{1}{2}$ *L*

Nearest images of colored sphere

Implementing PBC & MIC

Two Approaches

- \bullet **Decision based : if statement**
- \bullet **Function based : rounding, truncation, modulus**

Implementing PBC & MIC

Improvement due to PBC & MIC (Compared with naïve calculation)

- \Box **Accumulated energies are calculated for the periodic separation distance.**
- **Only molecules within cut-off distance contribute to the calculated energy.**
- **Caution : cut-off distance should be smaller** than the size of the simulation box \rightarrow **Violation to MIC**
- \Box **Calculated potential Truncated potential**

Long range correction to PCB

Adding long range correction…

 $X_{\mathit{full}} = X_{\mathit{c}} + X_{\mathit{lrc}}$

$$
E_{\text{Irc}} = 2\pi N \rho \int_{r_c}^{\infty} r^2 u(r) dr
$$

For NVT ensemble, density and no. of particles are const. \rightarrow LRC and be added after simulation For other ensembles, LRC terms must be added during simulation

Technique to reduce computation time Neighbor List

- \Box **1967, Verlet proposed a new algorithm.**
- \Box **Instead of searching for neighboring molecules, the neighbor of the molecules are stored and used for the calculation.**

Neighbor List

Neighbor List

 Variable d is used to encompass molecules slightly outside the cut-off distance (buffer).

- **Update of the list**
	- **Update of the list per 10-20 steps**
	- **Largest displacement exceed d value.**

Algorithm for Integration

Method of Integration $\bullet\bullet\bullet$

\Box **Methodological Approach**

 \bullet **Rectangular Rule, Triangular Rule, Simpson's Rule**

$$
I = \int\limits_{a}^{b} f(x) dx
$$

Monte Carlo Integration

\Box **Stochastic Approach**

 \Box **Same quadrature formula, different selection of points**

Points are selected from uniform distribution $\pi(x)$

Example …

(from Univ. at Buffalo, School of Eng. And Appl. Science, Prof. David Kofke)

Example …

(from Univ. at Buffalo, School of Eng. And Appl. Science, Prof. David Kofke)

Why Monte Carlo Integration ?

Comparison of errors

- Methodological Integration $E \propto \Delta x^2/n^2$
- Monte Carlo Integration $E \propto 1/n^{1/2}$
- **MC error vanishes much slowly for increasing n**
- **For one-dimensional integration, MC offers no advantage**
- **The conclusion changes when dimension of integral increases**
	- Methodological Integration $E \propto \Delta x^2 / n^{2/d}$ $2 / 2 /$ $\propto \Delta x^2/n^2$
	- **Monte Carlo Integration**

 $E \propto 1/n^{1/2}$

MC *"*wins*"* about d = 4

Shape of High Dimensional Region

- \Box **Two (and Higher) dimensional shape can be complex**
- \Box **How to construct weighted points in a grid that covers the region R ?**

 $\bullet\bullet\bullet$

Problem :

mean-square distance from the origin

$$
\langle r^2 \rangle = \frac{\int \int (x^2 + y^2) dx dy}{\int \int dx dy}
$$

Shape of High Dimensional Integral

- \Box **It is hard to formulate methodological algorithm in complex boundary**
- **Usually we do not have analytical expression for position of boundary**
- \Box **Complexity of shape can increase unimaginably as dimension of integral grows**
- \Box **We want 100 + dimensional integrals**

 \mathbf{r})/kT)d**r**

 $U(\mathbf{r})/kT$)*d*

Nature of the problem …

Integration over simple shape ?

Grid must be fine enough !

Sample Integration

Sample Integration

Integration over simple shape ?

- \Box **Statistical mechanics integrals typically have significant contribution from miniscule regions of the integration space.**
- \Box **Ex) 100 spheres at freezing fraction = 10-260**

Importance Sampling

 Put more quadrature points in the region where integral recieves its greatest contribution

 Choose quadrature points according to some distribution function.

A sample integration.

Importance Sampling Integral

Using Rectangular-Rule :

 \bullet **Use unevenly spaced intervals**

$$
I \approx \sum_{i=1}^{n} f(x_i) \Delta x_i
$$

$$
\Delta x_i = \frac{b - a}{n} \frac{1}{\pi(x_i)}
$$

