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Tasks of Molecular Simulation 
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Intermolecular Forces

 Intermolecular forces
 Force acting between the molecules of given mixture or 

pure species

 It is essential to understand the nature of 
intermolecular forces for the study of 
molecular simulation 

 Only simple and idealized models are 
available (approximation) 

 Our understanding of intermolecular forces 
are far from complete. 



Types of intermolecular forces

 Electrostatic forces 
 Charged particles and permanent dipoles

 Induced forces
 Permanent dipole and induced dipole

 Force of attraction between nonpolar 
molecules

 Specific forces 
 Hydrogen bonding, association and complex 

formation 



Potential Energy Function and 
Intermolecular Forces 

 Potential Energy : Energy due to relative 
position to one another 

 If additional variables are required for 
potential energy function …
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1. Electrostatic Force

 Due to permanent charges (ions,…)
 Coulomb’s relation (inverse square law)

 Two point charges separated from 
distance r 

 For two charged molecules (ions) ,
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Dielectric constant of given medium 



Nature of Electrostatic forces

 Dominant contribution of energy ….
 Long range nature 
 Force is inversely proportional to 

square of the distance
 Major difficulties for concentrated 

electrolyte solutions



Electrostatic forces between 
dipoles
 Dipole 

 Particles do not have net electric charge 
 Particles have two electric charges of same 

magnitude e but opposite sign. 
 Dipole moment 

 Potential Energy between two dipoles
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Energies of permanent dipole, 
quadrupoles
 Orientations of molecules are governed by two 

competing factors
 Electric field by the presence of polor molecules
 Kinetic energy  random orientation 

 Dipole-Dipole

 Dipole-Quadrupole

 Quadrupole-Quadrupole
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2. Induced Forces 

 Nonpolar molecules can be induced 
when those molecules are subjected to 
an electric field.

Ei αμ =

Polarizability

Electric Field Strength 



Mean Potential Energies of 
induced dipoles
 Permanent Dipole + Induced Dipole

 Permanent Dipole + Permanent Dipole

 Permanent Quadrupole + Permanent Quadrupole 
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3. Intermolecular Forces 
between Nonpolar Molecules

 1930, London 
 There was no adequate explanation for the forces 

between nonpolar molecules
 Instant oscillation of electrons  Distortion of electron 

arrangement was sufficient to caus temporary dipole 
moment  

 On the average, the magnitude and direction averages 
zero, but quickly varying dipoles produce an electric 
field.  induces dipoles in the surrounding molecules

 Induced dipole-induced dipole interaction



London dispersion force
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Potential energy between two nonpolar molecules are :

independent of temperature and

varies inversely as sixth power of the distance  between them .
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Repulsive force and total 
interaction
 When molecules are squeezed, electronic replusion and 

rising of eletronic kinetic energy began to dominate the 
attractive force

 The repulsive potential can be modeled by inverse-power 
law

 The total potential is the sum of two separate potential 
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General form of intermolecular 
potential curve

 Mie’s Potential

 Lennard-Jones 
Potential
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The parameters for potential models can be estimated
from variety of physical properties 
(spectroscopic and molecular-beam experiments)



Specific (Chemical) Forces

 Association : The tendency to from polymer 
 Solvation : The tendency to form complexes from 

different species 

 Hydrogen Bond and Electron Donor-Acceptor 
complexes

 The models for specific forces are not well established. 

 The most important contribution in bio-molecules 
(proteins, DNA, RNA,…) 



Simplified Potential Models for 
Molecular Simulations
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Calculation of Potential in 
Molecular Monte Carlo Simulation

 There are no contribution of kinetic energy in 
MMC simulation 
 Only “configurational” terms are calculated 
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Effect of external field

Potential between pairs of particles

Potential between particles of triplets



Using reduced units…

 Dimensionless units are used for 
computer simulation purposes
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Contribution to Potential energy

 Two-body interactions are most important term in 
the calculation

 For some cases, three body interactions may be 
important. 

 Including three body interactions imposes a very 
large increase in computation time. 

m: number of interactions 

mNt ∝



Short range and long range forces

 Short range force
 Dispersion and Replusion 

 Long range force 
 Ion-Ion and Dipole-Dipole interaction 

Interaction Type Dependence Typical E
(kJ/mol)

Comment

Ion-Ion 1/r 250
Ion-Dipole 1/r2 15
Dipole-Dipole 1/r3 2 Stationary 
Dipole-Dipole 1/r6 0.6 Rotating
London 1/r6 2



Short range and long range interactions

 Computation time-saving devices for short 
range interactions
 Periodic boundary condition
 Neighbor list

 Special methods are required for long range 
interactions. (The interaction extends past the 
length of the simulation box) 



Naïve energy calculation 
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Summation are chosen to avoid “self” interaction

Loop i = 1, N-1
Loop j = i+1,N 

Evaluate rij
Evaulate Uij

Accumulate Energy
End j Loop

End j Loop

Pseudo Code



Problems 

 Simulations are performed typically with a 
few hundred molecules arranged in a cubic 
lattice. 
 Large fraction of molecules can be expected at the 

surface rather than in the bulk. 

 Periodic Boundary Conditions (PBC) are 
used to avoid this problem 



Periodic Boundary Condition 

 Infinite Replica of the 
lattice of the cubic 
simulation box

 Molecules on any lattice 
have a mirror image 
counter part in all the 
other boxes

 Changes in one box are 
matched exactly in the 
other boxes  surface 
effects are eliminated.



Another difficulty…

 Summation over infinite array of 
periodic images 
  This problem can be overcame using 

Minimum Image Convention (MIC)



Minimum Image Convention 
(MIC)

Nearest images of colored sphere

For a given molecule, we position
the molecule at the center of a box 
with dimension identical to the 
simulation box. 

All the coordinates lie within the
range of ½ L and – ½ L 

Assume that the central molecule 
only interacts with all molecules 
whose center fall within this 
region.



Implementing PBC & MIC 

 Two Approaches
 Decision based : if statement
 Function based : rounding, truncation, modulus

BOXL2 = BOXL/2.0 
IF(RX(I).GT.BOXL2) RX(I)=RX(I)-BOXL
IF(RX(I).LT.-BOXL2) RX(I) = RX(I) + BOXL

RX(I) = RX(I) – BOXL * AINT(RX(I)/BOXL)

Decision Function

Nearest integer



Implementing PBC & MIC 

Loop i = 1, N -1
Loop j = I + 1, N 

Evaluate rij
Convert rij to its periodic image (rij’) 
if (rij’ < cutOffDistance) 

Evaluate U(rij)
Accumulate Energy 

End if
End j Loop

End i Loop 

Pseudo CODE 



Improvement due to PBC & MIC
(Compared with naïve calculation)

 Accumulated energies are calculated for the 
periodic separation distance. 

 Only molecules within cut-off distance 
contribute to the calculated energy. 

 Caution : cut-off distance should be smaller 
than the size of the simulation box 
Violation to MIC 

 Calculated potential  Truncated potential 



Long range correction to PCB 

 Adding long range correction… 
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For NVT ensemble, density and no. of particles are const.
LRC and be added after simulation
For other ensembles, LRC terms must be added during simulation



Technique to reduce computation time 
 Neighbor List

 1967, Verlet proposed a new algorithm.
 Instead of searching for neighboring 

molecules, the neighbor of the  molecules are 
stored and used for the calculation. 



Neighbor List 



Neighbor List 

 Variable d is used to encompass 
molecules slightly outside the cut-off 
distance (buffer). 

 Update of the list
 Update of the list per 10-20 steps
 Largest displacement exceed d value.



Algorithm for Integration 



Method of Integration 

 Methodological Approach 
 Rectangular Rule, Triangular Rule, 

Simpson’s Rule 
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Monte Carlo Integration 

 Stochastic Approach 
 Same quadrature formula, different 

selection of points 
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Points are selected from uniform distribution ( )xπ



Example …
(from Univ. at Buffalo, School of Eng. And Appl. Science,  Prof. David Kofke)



Example …
(from Univ. at Buffalo, School of Eng. And Appl. Science,  Prof. David Kofke)



Why Monte Carlo Integration ? 

 Comparison of errors 
 Methodological Integration
 Monte Carlo Integration 

 MC error vanishes much slowly for increasing n
 For one-dimensional integration, MC offers no 

advantage
 The conclusion changes when dimension of 

integral increases 
 Methodological Integration 
 Monte Carlo Integration 

22 / nxE Δ∝
2/1/1 nE ∝

dnxE /22 /Δ∝
2/1/1 nE ∝

MC “wins” about d = 4



Shape of High Dimensional Region

 Two (and Higher) dimensional shape can be 
complex 

 How to construct weighted points in a grid 
that covers the region R ? 

Problem : 
mean-square distance from the origin 
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Shape of High Dimensional 
Integral 
 It is hard to formulate 

methodological algorithm 
in complex boundary

 Usually we do not have 
analytical expression for 
position of boundary

 Complexity of shape can 
increase unimaginably as 
dimension of integral 
grows 

 We want 100 + 
dimensional integrals 
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Nature of the problem …



Integration over simple shape ?

0.5 0.5 2 2
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Grid must be fine enough !



Sample Integration 



Sample Integration 



Integration over simple shape ? 

 Statistical mechanics integrals typically have 
significant contribution from miniscule regions of the 
integration space. 

 Ex ) 100 spheres at freezing fraction  =  10-260



Importance Sampling

 Put more quadrature points in the 
region where integral recieves its 
greatest contribution 

 Choose quadrature points according to 
some distribution function. 



A sample integration.
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Importance Sampling Integral 

 Using Rectangular-Rule :
 Use unevenly spaced intervals

1xΔ 2xΔ 3xΔ nxΔ…
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