Chapter 4

Constrained Optimality Criteria

4.1 Equality Constrained Problems

NLP Problem 1

min f(x)
subject to
hk(X):O ]{?Zl,...,K
X = ($1,$2,. .. ,QZN)T € RN
Example 4.1
min f(X) —= T1T2T3
subject to
hi(x) =21 +x9+23—1=0 Case 1
or
hi(X) = 22x3 + D923 + 21 /75 = 0 Case 2

e variable-elimination method
r3=1—1x1 — 9 Case 1
. —1++1-— 41}231,'33 —JI12 + \/3314 — 41]1

I = Oor XI9X3 —
2$2$3 2

Case 2

e method of Lagrange multiplier

4.2 Lagrange Multipliers

Lagrangian Function of the NLP Problem 1

L v) = £() = v"h(x) = () = Y vihi(x)
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e L(x;v): the Lagrangian function
o v=(vy,...,vx)" € RE: the Lagrange multiplier. No sign restrictions on wv;’s.
Example 4.2 (Geometric Interpretation of Lagrange Multipliers)
min f(x) = 2} + 73

subject to
hl(X) = 2331—|—1L'2—2:O

Solution  Using the variable-elimination method: xy = 2 — 214

and 4
VIO) = $ VI (x)

Note that, as shown in Figure 4.1, V f(x*) is parallel to! Vh;(x*), i.e.,
Vf(x*) = 'Uthl(X*)

VIf (%) —vihi(¥)]xee =0

=L(x;v1)

The Lagrangian function L(x;Vv) is treated as a function of x where v is considered as a
parameter whose value is adjusted to satisfy the constraint.
The values of x and v can be simultaneously determined from

OL
= =1,...,N
oz, 0 Vi ey
L
hi(x) = g—vkzo Vk=1,....K

has either the same or the opposite direction with



Figure 4.1: Geometric interpretation of Lagrange mulitpliers
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4.3 Economic Interpretation of Lagrange Multipliers

min f(z1, )

subject to
hyi(my, 29) = by

Method of Lagrange multiplier:

L(zy, z9,v1) = f(x1,22) — v1[h1 (21, 22) — b1

oL\ _(of\ _ (9m\ _,
Ox; x*_ Ox; <+ u Ox; x*_

for i = 1,2. Change in f(x*) due to change in b;:

of 2 (0f ox}
(5_bl>x* B ; (5%),(* (abl> (4.1)

Change in hy(x*) — by due to change in b;:

2 ahl 83;;*
> (a), () -0 4

Eq. (4.1) —vi x Eq. (4.2) yields

OF\ _ . (0f Ol oz

=0

The rate of change of the optimal value of f with respect to b; is given by the optimal
value of the Lagrange multiplier v7.

Example 4.3 (Canonical ensemble system) In a pure component canonical ensem-

ble system of number of molecules N, volume V, and energy £, the energy is distrubuted
so that the entropy of the system is maximized.

max S, = —kg Zpi In p;

i=0
subject to
oo
Zpi =1
=0
o
sz‘Ei =E,
=0

where



CHAPTER 4. CONSTRAINED OPTIMALITY CRITERIA

FE; is i-th energy level

E,, = E/N is the mean molecular internal energy

kg is Boltzmann constant

p; s the probability of molecules having energy level E;
e S, =8/N is the mean molecular entropy

Assume that p;’s can be considered as continuous variables.

L(pi, o, ) = —kp sz‘ Inp; — «a (sz — 1) - B (szEz — Em>

oL
Op;

_kB‘i‘Oé‘i‘,BEl
kg

Inp;, =

Swm =Y _pilks +a+ BE;) = kg + a+ BE,

i—1
Interpretation of (3

5= OSm 1

- \0E, T

On the other hand,

Assume E; = ie then

a
Y=o (1 ) i

exp (—1 — %) =1—exp (—5—;)

Mean molecular internal energy is

E:
ZpiE,-:eXp (—1—g>ZeXp —6 ‘| E; = E,
i kB i k'B

or
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() - e ()

et
P dp \1— exp(—Pe/kp)
ey (—exp(—ﬁe/kg)e/k3>
[1 — exp(—pe/kp))?
_ exp(—pe/kp)e %k_B
" 1—exp(—Pe/kp) B

E=kgNT

= kgT (e << kp/pB)

or

4.4 Kuhn-Tucker Conditions

Karush[?] and later Kuhn and Tucker[?] have extended the method of Lagrange mul-
tiplier to include the general nonlinear programming (NLP) problem with both equality
and inequality constraints.

NLP Problem 2

min f(x) (4.3)
subject to
gi(x)>0 Vj=1,...,J (4.4)
hi(x) =0 Vek=1,....K
x € RN

Note that NLP Problem 1 is a special case of NLP Problem 2 when J = 0.

Definition 4.1 (Feasible Solution) X is a feasible solution to NLP Problem 2 when
gj(xX) >0 forj=1,...,J and hy(x) =0 fork=1,... K.

Definition 4.2 (Local Minimum) x* is a local minimum to NLP Problem 2 when x*
is feasible and f(x*) < f(X) for all feasible X in some small neighborhood §(x*) of x*

Definition 4.3 (Strict Local Minimum) x* is a strict (unique or isolated ) local min-
imum when x* is feasible and f(x*) < f(X) for all feasible X # x* in some small neigh-
borhood 0(x*) of x*

Definition 4.4 The inequality constraint g;(x) > 0 is said to be an active or binding
constraint at the point X if g;(x) = 0; it is said to be inactive or nonbinding if g;(x) > 0.

Kuhn and Tucker have developed the necessary and sufficient optimality conditions
for NLP Problem 2 assuming that the functions f, g;, and h; are differentiable. The
optimality conditions, commonly known as the Kuhn-Tucker conditions (KTC) may be
stated in the form of finding a solution to a system of nonlinear equations. Hence, they
are also referred as the Kuhn-Tucker problem (KTP).
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4.4.1 KTC or KTP

Find vectors x € RN, u € R’, and v € R¥ that satisfy

J
VL(x,u,v) = = u;Vg;i(x) kath x) =0 (4.6)
J=1
gi(x) > 0 Vj=1,...,J (4.7)
he(x) = 0 Vk=1,...,K (4.8)
u;gj(x) = 0 Vi=1,...,J (4.9)
w >0 Vji=1,..,J (4.10)

Eq. (4.9) is known as the complementary slackness condition in KTP.

Definition 4.5 (Kuhn-Tucker Point) A Kuhn-Tucker point to NLP Problem 2 is a
vector (x*,u*,v*) satisfying Eqs. (4.6) — (4.10)

Example 4.4
min f(x) = z,° — Ty
subject to
hl(X) = $1+$2—6:O
g(x) = z,—-1>0
@(xX) = 26—z, — 252 >0
KTP
fx) =] — 2 VI f(x) = (221, —1)
gi(x) =21 -1 Vigi(x) = (1, 0)
go(x) = 26 — 2?2 — 23 VTgy(x) = (=21, —215)
h1<X) =X + 29 — 6 VTh1<X) = ( )
e VL=0
2331 — Uy + 2331U2 — V1 = 0
-1 +2£L'2U2 — V1 = 0
Ty — 1 Z 0
26 — a7 — x5 >0
[ ] hk = O

$1+$2—6:O
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e u;g; = 0 (complementary slackness condition)
Uy (.’131 - 1) =0

up(26 — 23 — 23) = 0

Solution  Although the minimum is located at
r1=1 x5=5
and f* = —4:
Vo) = () Ve =( ) I = (1)
KTC is given by
e VL=0 (2eqn’s)
2—upt+us—v1 =0
—1+10uy —v1 =0
e hy =0 and
e both ¢g; and g, are active:
g1 =92=0

Thus we have 5 equations that should be satisfied by 4 unknowns — x1, xs, u;, and us —
hencd the KTC is overspecified. This is a very unusual case: 3 constraints — one equality
constraint and two active inequality constraints — meet at a point X, on a plain (R?) as
shown in Figure 4.2. As can be seen in the next example of maximizing f(x), KTC can
be properly defined for a rather normal situation where two constraints — h; = 0 and
g2 = 0 — meet at a point X (also see Figure 4.2).

Example 4.5 Mazimation of f(x) in Example 4.4
r1=5 zy=1 f'=24
10—u1+10u2—v120

—1 —}—’UQ — V1 = O
g=4 g=h=0
4U1 =0
Solution to KTP:

0 11 20
U = P — e —
1 U2 9 U1 9

N————

max f



Figure 4.2: Example 4.4
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4.4.2 Interpretation of KTC

Lagrangian function

L(x;u,v) = f(x) = > w;g;(x) = > vphi(x)
j 2
and Eq. (4.6) is the gradient of L with respect to x

Complementary Slackness Condition Since u; is the shadow price of the constraint
gj(x) > 0, it reflects the change in f* due to the change in b; when g; > 0 is rewritten as
gj > b;

o If g; is inactive (g;(x*) > 0), then change in b; will not results in any change f* and
U; = 0.

o If g; is active (g;(x*) = 0), then increase in b; means the NLP is more restrictive so
that f* will increase and hence u; > 0

Hence at least one of u; or g;(x) must be zero at the optimum, which results in the
complementary slackness condition, u;g;(x) = 0.

4.5 Kuhn-Tucker Theorems

Theorem 4.1 (KT Necessity Theorem) Consider the NLP Problem 2. Let f, g, and
h be differentiable functions and x* be a feasible solution to NLP. Let I = {j|g;(x*) = 0}.
Furthermore, Vg;(x*) for j € I and Vhy(x*) for k =1,...,K are linearly independent.

If x* is an optimal solution to NLP, then there exists a (u*,v*) such that (x*,u*,v*)
solves the KTP given by Eqs. (4.6) — (4.10).

Constraint Qualification The condition that Vg;(x*) for j € I and Vhy(x*) for k =
1,..., K are linearly independent at the optimum is known as a constraint qualification.
For the following NLP problems, the constraint qualification is always satisfied:

e When all the inequality and equality constraints are linear.

e When all the inequality constraints are concave functions and the equality con-
straints are linear and there exists at least one feasible x that is strictly inside the
feasible region of the inequality constraints. In other words, there exists an X such
that g;(x) >0for j=1,...,J and h(X) =0for k=1,..., K.

When the CQ is satisfied at the optimum, there exist a solution to the KTP — If the
KTP does not have a solution, either CQ is violated or x* is not an optimum.

When the CQ is violated at the optimum, there may not exist a solution to the KTP.
A few example of CQ being violated are
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e In Example 4.4, more than N — K inequality constraints are active at the optimum.
KTP possesses multiple solution.

e In Example 4.6, gy = 0 and g3 = 0 share the same tangent line at the optimum.
KTP does not have any solution.

Example 4.6
min f(x) = (z; — 3)* + 25

subject to
ax) = (1—z1)° —2>0

g(x) = >0
g3(x) = 23>0

*
*
L9

L= (331 — 3)2 + l’g — ul[(l — 331)3 — 332} — U9XL1 — U3T2

KTC is given by

From the Figure 4.3,

oL

—_— = 2(1]1 —3)+3U1(1—$1)2—U2 = —4—’11,2 =0 (411)
8331

oL

_— = .’132+U1—U3:U1—U3:O

(9.’132

ugr = w(l— 331)3 —xl =u; x0=0

U2gs = UT1 = Ug X 1=0 (412)
Uzgs = U3T9 — U3z X 0=0

Both g, and g3 are active but Vg, and Vg3 are linearly dependent to each other as

shown below 0 0
Vo) = (°)) Ve = (1)

As a consequence, the KTP is not solvable since Eqs. (4.11) and (4.12) contradict to
each other.

Theorem 4.2 (KT Sufficiency Theorem) Consider the NLP problem given by Egs.
(4.83) = (4.5). Let the objective function f(x) be convez, the inequality constraints g;(x) be
all concave functions for j = 1,...,J, and the equality constraints hy(x) fork =1,..., K
be linear. If there exists a solution (x*,u*,v*) that satisfies the KT condition given by
Eqgs. (4.6) — (4.10), then x* is an optimal solution to the NLP problem.
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Figure 4.3: Example 4.6
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Remarks

1. For practical problems, the constraint qualification will generally hold. If the func-
tions are differentiable, a Kuhn-Tucker point is a possible candidate for the opti-
mum. Hence, many of the NLP methods attempt to converge to a Kuhn-Tucker
point.

2. When the sufficiency conditions of Theorem 4.2 hold, a Kuhn-Tucker point auto-
matically becomes global minimum. Unfortunately, the sufficiency conditions are
difficult to verify, and often practical problems may not possess these nice property.
Note that the presence of one nonlinear equality constraint is enough to violate
theassumptions of Theorem 4.2.

3. The sufficiency conditions of Theorem 4.2 have been generalized further to noncon-
vex inequality constraints, non convex objective functions, and nonlinear equality
constraints. These use generalization of convex functions such as quasi-convex and
pseudo-convex functions?

4.6 Saddlepoint Conditions

Definition 4.6 (Saddlepoint) A function f(x,y) is said to have a saddlepoint at (x*,y*)
if Fx,y) < f(x',y") < f(x,y") for all x and y.

min z°
subject to
zr—2>0
L(z,u) = 2* — u(z — 2)
=2 u'=4
L(2,u) < L(2.4) < L(x,4)
—— ~—— ———
4 4 (x—2)2+4

Kuhn-Tucker saddlepoint problem (KTSP) Find (x* u*) such that
L(x*,u) < L(x*,u") < L(x,u")

all u; > 0and all x € S

where

L(x,0) = f(x) = 3 uyg5(x)

Theorem 4.3 (Sufficient Optimality Theorem) If (x*,u*) is a saddlepoint solution
of a KTSP, then x* is an optimal solution to the NLP problem.

20. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.
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Remarks
1. No convexity assumptions of the functions have been made in Theorem 4.3.
2. No constraint qualification is invoked.

3. Nonlinear equality constraints of the form hy(x) = 0 for £ = 1,..., K can be
handled easily by redefining the Lagrangian function as

L(x,u,v) = f(x) = > ujg;(x) — > vphi(x)
j k
Here the variables vy, for k = 1,..., K will be unrestricted in sign.

Existence of Saddlepoints There exist necessary optimality theorems that guaran-
tee the existence of a saddlepoint solution without the assumption of differentiability.
However, they assume that the constraint qualification is met and that the functions are
convex.

Theorem 4.4 (Necessary Optimality Theorem) Let x* minimizes f(x) subject to
gj(x)>0,5=1,...,J andx € S. Assume S is a convex set, f(x) is a convex function,
and g;(x) are concave functions on S. Assume also that there ezists a point X € S such
that gj(x) >0 for all j =1,...,J. Then there exists a vector of multipliers u* > 0 such
that (x*,u*) is a saddlepoint of the Lagrangian function

L(x,u) = f(x) = >_u;g;(x)
j
satisfying
L(x*,u) < L(x*,u") < L(x,u")
forallx €S and u > 0.

Theorem 4.5 A solution (x*,u*) with u* > 0 and x* € S is a saddlepoint of a KTSP if
and only if the following conditions are satisfied:

1. x* minimizes L(x,u*) over allx € S
2. gj(x*) >0 forj=1,...,J
3. ujgi(x*) =0 forj=1,...,J

4.7 Second-Order Optimality Conditions

Theorem 4.6 (Second-Order Necessity Theorem) Consider NLP Problem 2. Let
f, g;, and hy, be twice-differentiable functions, and let x* be feasible for the NLP. Let the
active constraint at x* be I = {j|g;(x*) = 0}. Furthermore, assume that Vg;(x*) forj € 1
and Vhp(x*) for k = 1,..., K are linearly independent. Then the necessary conditions
that x* be a local minimum to NLP Problem 2 are that
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1. There exists (u*,v*) such that (x*,u*,v*) is a Kuhn-Tucker point.

2. For every vector'y € RN satisfying
y'Vg;(x*) =0 forjel

y Vhi(x*) =0 fork=1,... K

it follows that
y H (x*, u*, vy >0

H (x*,u*,v*) is the Hessian matriz of the second partial derivatives of L with
respect to x evaluated at (x*,u*,v*).

Theorem 4.7 (Second-Order Sufficiency Theorem) Sufficient conditions that a point
x* is a strict local minimum of NLP Problem 2, where f, g;, and h;, are twice-differentiable
functions, are that

1. There exists (u*,v*) such that (x*,u*,v*) is a Kuhn-Tucker point.

2. For every nonzero vector y € RN satisfying
y'Vgi(x*) =0 for j € I = {jlg;(x*) = 0,u; > 0}

y'Vg;(x) > 0 for j € T = {jlg;(x) = 0,u; = 0}
Y Vhi(x) =0 fork=1,...,K

y#0

it follows that
y H (x*, u*, vy > 0

4.8 Summary

The necessary and sufficient conditions for x* to be a local minimum of NLP Problem 2:
1. The necessary conditions for x* to be a local minimum of f(x) are:

(a) f, g;, hy are all twice differentiable at x*

(b) The so-called second-order constraint qualification holds®; the sufficient con-
ditions for this requirement are that the gradient of the binding constraints
(gj(x*) = 0), Vg;(x*), and the equality constraints, Vh;(x*), because hy,(x*) =
0, are linearly independent.

(c) The Lagrange multipliers exist; they do if (b) holds.

3Tt contains information about the curvature of the constraints that is taken into account at x* as
explained in Example 8.4 of Edgar and Himmelblau
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(d) The constraints are satisfied at x*

(e) The Lagrange multipliers u} are not negative
u; >0

(f) The binding (active) inequality constraints are zero; the inactive inequality
constraints are > 0, and the associated u;’s are 0 at x*

u;g;(x") =0
(g) The Lagrangian function is at a stationary point
VL(x*,u",v) =0

(h) The Hessian matrix of L is positive semidefinite for those y’s forr which
yIVg;(x*) =0, and y? Vh,(x*) = 0, that is, for all the active constraints

yTHL(x*,u*,v*)y >0
2. The sufficient conditions for x* to be a local minimum are:
(a) The necessary conditions (a), (b) by implication, (c), (d), (e), (f), and (g)

(b) Second-order sufficiency theorem 4.7[13]

4.9 Assignments

e Reklaits, ef. al.’s Chapter 5: Constrained Optimality Criteria [19]
e Edgar & Himmelblau’s §8.1 — 8.2 [5]

e Rao’s §2.4 — 2.5 [17]
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