Chapter 3

Functions of Several Variables

Let f(x): RN +— R be twice differentiable which will be minimized (or maximized).
e x: design variable of dimension N
e f: objective function

e Vf: gradient!

T
vf:<0f of of 0f>

8%17 8%27 al'g? Y &rN

3.1 Optimality Criteria

Optimality criteria are necessary
1. to recognize solutions, and

2. they provide motivation for most of the useful search methods

Taylor series expansion

Fx) = FR) +a®)Ax+ JAXTHE)Ax + O(|Ax])

= f(T1,T2) + lg—;l(xl — Tl) + 3_52(:@ _7)
2 9 ;
+ B—é(m — 7)) + 825@ (21— T1) (9 — T) + g—é(m —T)°

where all the partial derivatives are evaluated at x = X = (T, T9)
e X = the current or expansion point in RV

¢ Ax = x — X = the change in x

IWe need brief discussion on continuity and differentiability of f

25
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e g(X) = Vf(X) = the N-component column vector of first derivatives of f(x) eval-
uated at X

e H(X) = V2f(X) = the N x N symmetric matrix of second partial derivatives of
f(x) evaluated at X, often called the Hessian matrix. The element in the i-th row

2
and j-th column is ai (;;j.
0 f 0% f
(9_.’13% o aLUlaiUN
H=H; = : : = Hj
0*f 0*f
al']vaﬂfl o %

e O(]]Ax]|]?) = all terms of order greater than or equal to 3 in Ax

Neglecting the third and higher order terms yields

AF(x) = f(x) — (%) = g(®)Ax + %AXTH(K)AX (3.1)

Minimum, maximum, and saddle point

Af(x) =f(x) = f®) =0 (3.2)

e The point X is a global minimum if Eq. (3.2) holds for all x € RN, and we give this
point the symbol x**.

e When Eq. (3.2) holds for some d-neighborhood that is, for all x such that ||x—X|| <
0 for some § > 0, then X is a local minimum or x*.

e When
Af(x) =f(x) - f®) <0 (3-3)
then X is a maximum.
e Removal of ‘=" in Egs. (3.2) and (3.3) produces strict minimum and maximum

points.

e When Af is either positive, negative, or zero depending on the choice of nearby
points in a d-neighborhood, then X is a saddlepoint

A rough statement of optimality condition In order that the sign of Af be
known for arbitrary values of Ax, g(X) must be zero; that is, X must be a stationary
point. Otherwise, we could force Af to be plus or minus depending on the sign of g(X)
and Ax. Accordingly, X must satisfy the stationary condition:

g(x)=0
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so Eq. (3.1) becomes

Af(x) = % AXTH(%) Ax
Q(Ax)

The sign of Af(x) depends on the nature of the quadratic form

Q(x) = x'H(X)x

Classification of stationary point The stationary point X is a (See Appendix §A.3.)
e minimum, if H(X) is positive definite.
e maximum, if H(X) is negative definite.

e saddlepoint, if H(X) is indefinite.

Theorem 3.1 (Necessary Conditions) For x* to be a local minimum, it is necessary
that

e g(x*) =0, and

o H(x*) is positive semidefinite.
Theorem 3.2 (Sufficient Conditions) If

e g(x*) =0 and

o H(x") is positive definite.
then x* is an isolated local minimum of f(x).
Example 3.1 Find all the stationary points of

f(x) = 22 + dzy20° — 102139 + 257

and identify the nature of each point.

4.’131 + 4.’1323 — ].01‘2 ) —0
12.’1311’22 — 10.’131 + 2.’132 o

Vi) = (

2 _ 4 12292 — 10)
Vif(x) = (123322 —10 24xymy +2



f(x)= 2x| +4x‘ 2-IOul x2+ "z

Figure 3.1: Two-variable nonlinear function
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Table 3.1: Example 3.1

point eigenvalues nature
(0,0) —7.04988, 13.0499 | saddle point
(—1.5138,—0.85948) | 3.95595, 33.2699 minimum
(1.5138,0.85948) 3.95595, 33.2699 minimum
0.153434, —1.61078) | —21.4471, 21.5545 | saddle point
( : ) , p
—0.153434,1.61078) | —21.4471, 21.5545 | saddle point
( : ) : p

3.2 Direct Search Methods

Optimization techniques for unconstrained multivariable problem
e Direct search methods, which use only function values.

1. simplex? search or S?
2. Hooke-Jeeves pattern search

3. Powell’s conjugate direction
e Gradient methods, which requires accurate values of the first derivative of f(x)

— Cauchy’s (or steepest descent, simple gradient)
— conjugate gradient

— quasi-Newton (or variable metric)

e Second-order methods, which, in addition to the above, also use the second deriva-
tive of f(x)
— Newton(-Raphson)
— modified Newton

— Marquardt

3.2.1 The S? or Simplex Search Method

In N dimensions, a regular simplex is a polyhedron composed of N +1 equidistant points,
which form vertices. For example, an equilateral triangle is a simplex in two dimensions;
a tetrahedron is a simplex in three dimensions.

2It has no relationship to the simplex method of LP. The similarity in name is indeed unfortunate.
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Simplex search procedures

1. Given an equilateral polyhedron with N + 1 vertices, x¢, ..., Xy, choose x; such
that
f(x5) = f(x) i=1,...,N+1 (“worst” vertex)

2. Calculate the centroid of the remaining N points

N

Xe = Z;

1
N i=0,i#j

3. Calculate the reflection point

x; ™ = x; + A(x. — x;)

where \ = 2.

Troubleshooting and Termination

1. (Minimum Straddled) If the selected “worst vertex” was generated in the previ-
ous iteration, then choose instead the vertex with the next worst (highest) function
value.

2. (Cycling) If a given vertex remains unchanged for more than M = 1.65N +0.05N?
iterations, reduce the size of the simplex by some factor.

3. (The Termination Criterion) The search is terminated when the simplex gets
small enough or else if the standard deviation of the function values at the vertices
gets small enough.

3.2.2 The Hooke-Jeeves Pattern Search Method

Exploratory Move Given a specified step size, which may be different for each coor-
dinate direction and change during the search, the exploration proceeds from an initial
point by the specified step size in each coordinate direction. If the function value does not
increase, the step is considered successful. Otherwise, the step is retracted and replaced
by a step in the opposite direction, which in turn is retained depending upon whether it
succeeds or fails. When all NV coordinates have been investigated, the exploratory move
is completed. The resulting point is termed a base point.

Pattern Move A pattern move consists of a single step from the present base point
along the line from the previous to the current base point. Thus a new pattern point is
calculated as

Xpr1 = X + (X — Xp—1)

X1 is accepted only when the objective function value is improved.
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3.2.3 Powell’s Conjugate Direction Method
Quadratic Model

1. It is the simplest type of nonlinear function to minimize, and hence any general
technique must work well on a quadrature if it is to have any success with a general
function.

2. Near the optimum, all nonlinear function can be approximated by a quadratic.
Hence, the behavior of the algorithm on the quadratic will give some indication of
how the algorithm will converge for general function.

The motivation of the algorithm stems from the observation that if a quadratic func-
tion in NV variables

1
q(x) =a+b'x+ §XTCX

can be transformed so that it is just the sum of perfect squares, then the optimum can be
found after exactly IV single-variable searches, one with respect to each of the transformed
variables. The quadratic term in ¢(x), namely,

Q(x) =x'Cx
with transformation x = Tz will yield
Q(x) =2z'TT'CTz = z' Dz

where D is a diagonal matrix.
Let t; be the jth column of T, then

X:TZ:t121+t222+"'+tNZN

If a suitable set of transforming vectors t;; 7 = 1,..., N, conventionally called conjugate
directions, can be obtained, then the optimum of a quadratic function can be found
exactly N single-variable searches.

For given C the transform T, or its inverse P, where C = PTDP can be readily found
by the method of “completing the square” [19, §A.4.2]. However, an estimate of C is not
available in our case, because we are seeking to develop a method for optimizing f(x)
that uses only function values, not first derivatives and certainly not second derivatives.

Parallel Subspace Property Given a quadratic function ¢(x), two arbitrary but
distinct points x; and X,, and a direction d; if y; is the solution to

q(y1) = min g¢(x; + A\d)

and y» is the solution to
q(y2) = min q(x3 + Ad)

then the direction (y; —y1) is C-conjugate to d.



Hx)eaxt+ 304X X# %, |

Figure 3.2: A quadratic with cross term
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Figure 3.3: A quadratic without cross terms
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Figure 3.4:

Conjugacy in two directions
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Definition 3.1 (Conjugate Directions) Given an N x N symmetric matriz C, the
directions sy, S, ..., sU);r < N are said to be C-conjugate if the directions are linearly
independent, and

siCs; =0

for alli # 5

3.3 Gradient-Based Methods

All the methods considered here employ a similar iteration procedure:
Xpi1 = X + aps(Xy)
where
e X; = current estimate of x*, the solution
e s(xj) = s, = search direction in the N space of the design variables z;; i =1,..., N

e «; = step-length parameter

3.3.1 First-Derivative Methods
3.3.1.1 Cauchy’s Method

Also referred as the steepest descent method or the simple gradient method
f(x) = f(®) + X Ax+ -
Search direction
S(%) = —g(%)

is the direction of most local descent or the steepest descent direction.

Line search For x =X+ as(X) or x; = T; + as; and xs = Ty + s,

rg%lF(a) = f(x) = f(X+ as) = f(x1 + asy, xs + ass)

Py O don O dvy (W ﬁ) (2) =& e -

© Ory da Oxs da 0x1’ Bzy ) \ 52

Descent property

and
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Figure 3.5: Powell’s conjugate direction method
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3.3.1.2 Conjugate Gradient Methods

Fletcher-Reeves )
|| gk | |

Sk—1
||gk71||2

S = —8r +

where g, = g(x;)

Polak-Ribiere
(gk - gkfl)Tgk

||g1H||2

Sy = —8r + Sk—1

3.3.1.3 Quasi-Newton Methods
sp = —Aggs,

where Aj, is an N x N matrix called the metric. Methods that employ directions of this
form are often called variable metric methods, because A changes at each iteration.

Davidon-Fletcher-Powell (DFP)

Axkqﬁxﬁl Ak—lAgk—lAg(kil)TAk—l
Axj  Agy Agk-DTA; 1 Agpy

Broyden-Fletcher-Shanno (BFS) or BFGS?

_ AxpAgp
AX%Agk

Ak+1 = [I

A, [I AxkAng] Ax Axt

- AxTAg.| " AxTAg,

3.3.2 Second-Derivative Methods
3.3.2.1 Newton’s Method

F) = F(%) + 8E)Ax + S AXTHE)Ax + O(| Ax]])

quadratic approximation
~ 1
f(xxk) = f(xg) + g(x)Ax + §AXTH(xk)Ax

Vix;xp) = g(xk) + H(xx)Ax =0

Xpe1 = X — [H(xp)]'g(xx)

3Broyden-Fletcher-Goldfarb-Shanno
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3.3.2.2 Modified Newton’s method
X1 = X — o [H(x)] " g (%)
e choose a; that minimizes f(xy.1)

e ensures descent property

3.3.2.3 Marquardt’s method

Cauchy + Newton
S(Xk) = —[Hk + )\kI]ilg(X/@)

3.3.3 A Gradient-Based Algorithm

e Calculate s
e Find o (> 0) such that f(x + as) is minimum

Conjugate gradient and quasi-Newton family are the most popular unconstrained min-
imization algorithms. These algorithms are continuously evoling and widely available
in both commercial and public domain. The algorithms inherently have triple iteration
hierarchy, and the algorithm providers use their own way of counting the number of it-
erations. The innermost loop is the line search iteration, then the conjugate direction
iteration, and the outermost one.

Line search iteration Let F(o) = f(x; + asy,) then the line search is given by

min F(a)
Using chain rule,
F'(a) = g"(xy, + asy)sy,

F'(«) will be zero at the point where the search direction vector, s, lies on the tangent
of the contour of f(x) = fz. which provides a very useful termination criterion for the
line search. A typical termination criterion for line search of gradient-based algorithm is

F'log) _ g' g
F"(0) grer
where g = g7 (x;, + as;). Let
o(a) = 8
g1 8Bk

then 3(0) = 1 which corresponds to the current base point xy.
Assume that f is quadratic so that g(x) = 2Cx + b. We claim that
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is the minimum point of F(«), i. e., F'(a*) = 0. Note that g, = 2Cx;, + b and
g = 2C(x; + as) + b = g + 2aCs

It can be easily shown from

81 8k +3dg%Csk 14 0a8k Co _ g
g5 8Bk g1 Bk
T 20" TC TC
818k T O BLTSE _ gy gy BESE
g1 8k 8 8k

It enhances the performance of the line search, especially when the objective function
resembles a quadratic function, and allows the tolerance e be typically 0.1, and even 0.9
for some special circumstances.

Conjugacy iteration As we already discussed, the sequence of search direction s;’s,

k=1,..., are conjugate directions with respect to the Hessian matrix of f(x) if
e f(x) is quadratic, and (C-1)
e the line search is exact. (C-2)

The search directions are
e linearly independent to each other, and (P-1)
e descent direction, i. e., (s;)'gy < 0. (P-2)

In this case, we expect that there exist N conjugate directions, and the optimization
iteration should terminate after IV search-direction generation — After N-th line search,
llg(xn)|| = 0. In practice, neither (C-1) nor (C-2) is satisfied. Hence ||g|| > € where €
is the allowable error limit. If we generate (N + 1)-st search direction, then it will be no
more conjugate to the previously generated search direction, since (P-1). It requires to
generate new set of conjugate search directions:

SN+1 = —g(XN+1)

In fact, the first IV search directions, si,...,sy do not form an ezact conjugate set if
either (C-1) or (C-2) is violated. Hence, in some cases, (P-2) is violated:

(st)"gr >0 (3.4)

The loss of conjugacy is not rare if N is large, and Eq. (3.4) is another termination
criteria of conjugacy iteration.



CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 40

Outermost iteration The iteration count of outermost loop increased by 1 whenever
the conjugate direction set restarts. The single outermost iteration might be compared
to the single classical Newton-Raphson iteration in some sense. But we expect that the
conjugate gradient or quasi-Newton methods are computationally more efficient, espe-
cially when the objective function is complicated and/or has large number of decision
variables, if we consider the effort required to complete single outermost iteration.

Termination Criteria The optimization iteration terminate in any loop if a pre-
specified combination of following criteria is satisfied.

o |01 — x| < GOT_UfﬁtL:;fﬁu
|1l

o [fi1— fil <e

o |lgrl[ <€

e Maximum number of function evaluation

Conjugate gradient and quasi-Newton algorithms
1. Step 1: Initialize conjugate direction set.
e Set i =1and ®(i —1,s,x,8) =0
2. Step 2: Generation of conjugate direction.

e Compute f; = f(x;) and g; = g(x;)
e s, =—g +P(i—1,8%,8)

e If sTg; > 0 then go to Step 1. (Loss of conjugacy terminates the conjugacy
iteration prematurely.)

3. Step 3: Line search
* min f(xi + as;)
o x(Y) = x; + ays;

e Seti=1i+1
4. Step 4

e Ifi > N then go to Step 1 (Outermost loop), otherwise go to Step 2 (Conjugacy
loop).
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3.3.4 Numerical Gradient Approximations

Forward difference

ofx)| _ fX+ee)— f(X)
or; |, N € (90)
Central difference
of (x) (X tee) — f(X—ce)
8$i X=% N 2e (91)

3.4 Comparison of Methods and Numerical Results

Test problems

e Himmelblau’s function

f(x) = 22 + dzy 20> — 102179 + 257

e Rosenbrock’s function

f(x) = 100(2y — 2,2)* + (1 — z1)?

e Fenton and Eason’s function

0.1+ 0.11’22 I 0.11}121}22 + 10

=1.2+ 0.1z,
f(x) + 0.1z," + o2 (2122

e Wood’s function

f(x) = 100(zy + 213+ (1 — 21)* + 90(zy — 232)* + (1 — z3)*
+10.1 [(ms = 1)* + (w4 — 1)?] +19.8(z5 — 1)(2s — 1)

3.5 Assignments

3.5.1 Reading Materials

o Reklaitis, et. al.’s Chapter 3 [19]

e Edgar & Himmelblau’s Chapters 4 & 6 [5]

e Rao’s Chapter 6 [17]

e Chong & Zak’s Chapters 6 & 8 — 11 [4]
Example 3.2 Cauchy vs. FR for quadratic function

min f(x) = 8z + 4z,z9 + 525
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Cauchy’s method using Mathematica

1. Initialization

f
g

8 x172 + 4 x1 x2 + 5 x272
{D[f, x1], D[f, x2]}
n=1

{uiln], uw2[nl} = {-4, -4}

2. Cauchy iteration

{s1, s2} = -g/.{x1 -> ul[n], %2 -> u2[nl}

m = FindMinimum[f/.{x1 -> ul[n] + a s1, x2 -> u2[n] +a s2}, {a, 0}]
n = n+l

{uilln], uv2[nl} = {ulln-11, uw2n-11} + (a/.Part[m, 2]) {s1, s2}

3. Graphic display of result

pl = ListPlot[Table[{u1l[il, u2[il}, {i, n}], PlotJoined -> True]
p2 = ContourPlot[f, {x1,-1,1}, {x2,-1,1}, ContourShading -> False]
p3 = ContourPlot[f, {x1,-4,1}, {x2,-4,1}, ContourShading -> False]

Show[pl, p2, p3]

Fletcher-Reeves’ method using Mathematica

1. Initialization

f=8%x1"2 + 4 x1 x2 + 5 x272
g = {D[£f, x1], D[f, x2]}
n=1

{uiln], uw2[nl} = {-4, -4}

sa = {0, 0}

ga =1

2. FR iteration

{gl, g2} =g /. {x1 -> ulln], x2 -> u2([n]l}

gb =gl gl + g2 g2

{s1, s2} = -{g1, g2} + sa gb /ga

m = FindMinimum([f/.{x1 -> ul[n] + a s1, x2 -> u2[n] + a s2}, {a, 0}]
n=n+1

{uiln], v2nl} = {uiln-11, vw2[n-11} + (a /. Part[m, 2]) {s1, s2}

ga = gb

sa = {s1, s2}
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Example 3.3 Cauchy vs. FR for non-quadratic function
min f(x) = 25(z; + 222 — 4)* + (221 — 29 — 1)°

Example 3.4 (Example 1.3) This is a typical example of illustrating the importance
of proper scaling of system model.

Formulation of Least-Squares Problem

8

11;})11 fla,b) =Y [P(v;,T;) = PP =)

i=1 i=1

[ ik - —Br (1.1)

vi—b VT (v + b)
e Let the initial guess of (a,b) is (0,0) then
—3.86 x 107

e According to Reklaitis[19, p. 22|, f(6.377 x 107,29.7) = 0.097 is the minimum

(RMSE = 0.11).
3.47 X 108>

7 _
g(6.377 x 107,29.7) = < 0.0422

e According to FindMinimum of Mathematica with (ag, by) = (0,0), £(6.480x107,31.24) =
0.0852 is the minimum (RMSE = 0.103).

Scaling of system model

e From thermodynamics: v > b > 0

O(b) = O(v) = minv; = 400

e From thermodynamics: a > 0 and O (E) Yo ) (N —
v—>b VTvu(v +b)
v+b

e RTVTv = min RT,\/Tv, = 1.48 x 10°

O(a) = RTVTv

U —
Defind new decision variables («, 3) so that

a = 148 x 10%«

b = 40043
and RT 1.48 x 108

p_ L8 x10°% (b)
v —4008  \/Tv(v + 4000)
Thanks to the proper scaling, we will be much happier with the gradient of f(a, 5):
—5711 5.132
8(0.0) = ( 6977 ) —16.90)

FindMinimum found the minimum f(0.4378,0.0781) = 0.0852

and  g(0.4309,0.0743) = (
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Matlab m-file c:\che542\ex0104.m for Example 1.4 of Reklaitis

function f=fun(x)

R=82.06; a=1.48e+08*x(1); b=400*x(2);

P(1)=33.0; v(1)=500.0; T(1)=273.0;
P(2)=43.0; v(2)=500.0; T(2)=323.0;
P(3)=45.0; v(3)=600.0; T(3)=373.0;
P(4)=26.0; v(4)=700.0; T(4)=273.0;
P(5)=37.0; v(5)=600.0; T(5)=323.0;
P(6)=39.0; v(6)=700.0; T(6)=373.0;
P(7)=38.0; v(7)=400.0; T(7)=273.0;
P(8)=63.6; v(8)=400.0; T(8)=373.0;
£=0;

for i=1:8,

dP=R*T(i)/(v(i)-b)-a/sqrt(T(i))/v(i)/(v(i)+b)-P(i);
f=f+dP*dP;
end

Execution from Matlab command window

> x0=[0,0]

x0 =

> options(1)=1
options =
1
> cd c:\cheb42
> x=fminu(’ex0104’,x0,options)
f-COUNT FUNCTION STEP-SIZE GRAD/SD LINE-SEARCH
4 876.769 0.001 -8.13e+007

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.296142e-018

11 470.706 5.8419e-006 -5.79e+007 incstep

44
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17 384.293 0.000153823 -4.69e+004 incstep

23 8.04672 0.829131 -6.39 1incstep

30 1.7089 14.5935 -0.168 incstep IF
35 1.11338 0.10918 -4.72 incstep

41 0.319636 0.843285 0.0000238

47 0.0874874 1.80015 -0.000915 incstep

52 0.0852005 1.04197 -3.68e-007 1incstep

57 0.0851855 0.906612 3.5e-008 int_st

Optimization Terminated Successfully
Gradient less than options(2)
NO OF ITERATIONS=57

0.4378 0.0781
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