Chapter 2

Functions of a Single Variable

Single-variable optimization problem is of central importance to optimization theory and
practice:

e not only because it is a type of problem that the engineer commonly encounters in
practice,

e but also because single-variable optimization often arises as a subproblem within
the iterative procedures for solving multivariable optimization problems.

2.1 Properties of Single-Variable Functions

Problem 2.1 Minimize
f@)=a*+22"—2+3

subject to
xeS

e If S =R, Problem 2.1 is an unconstrained problem.

o If S={z| — 5 <z <5} Problem 2.1 is a constrained problem.
In engineering optimization,

e f: objective function

e S: feasible region, constraint set, or domain of interest of x

Classification of functions (Figure 2.1)

e Continuous function
e Discontinuous function

e Discrete function
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Figure 2.1: Various single variable functions
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e Monotonic function

e Unimodal function

Definition 2.1 (Monotonic Function) A function f(x) is monotonic (either increas-
ing or decreasing) if for any two points x; and xy with x1 < x4, it follows that

f(z1) < f(xg) monotonically increasing
f(z1) > f(x) monotonically decreasing

Definition 2.2 (Unimodal Function) A function f(x) is unimodal on the interval
a < x < bif and only if it is monotonic on either side of the single optimal point z*
in the interval. In other words, if x* is the single minimum point of f(x) in the range
a <z <b, then f(x) is unimodal on the interval if and only if for any two points x, and
L2,

v <ay < implies that  f(a") < f(a1) < f(a)

and
Tt > 1 > xy implies that flz") < fx1) < f(xo)

2.2 Optimality Criteria
In considering optimization problems, two questions generally must be addressed

1. The static question: How can one determine whether a given point z* is the optimal
solution? (Figure 2.2)

2. The dynamic question: If * is not the optimal point, then how does one go about
finding a solution that is optimal?
Definition 2.3 (Global Minimum) A function f(x) defined on a set S attains its
global minimum at a point ** € S if and only if

fl@™) < f(z) VzeS

Definition 2.4 (Local minimum) A function f(x) defined on S has a local minimum
(relative minimum ) at a point z* € S if and only if there exist an € > 0 such that

f(z") < f(=)

for all x € S satisfying | © — x*| < e.



4000 |

3000 |
2000 [
i local
local [ maximum
. 1000 |
maximum i /—\
. [P /T\. . . P T . R A
-4 -2 \—-I/ | 2 NS
: loca local
-1000 : minimum minimum
-2000 |
-3000 [
global
minimum

Figure 2.2: Loca and global optima



CHAPTER 2. FUNCTIONS OF A SINGLE VARIABLE 16

Remarks

1. By reversing the directions of inequality, we can get the equivalent definitions of
global maximum and local maximum.

2. Under the assumption of unimodality, the local minimum automatically becomes
the global minimum.

3. When the function is not unimodal, multiple local optima are possible and the
global minimum can be found only by locating all local optima and selecting the
best one.

Identification of Single-Variable Optima For z € (a,b), let z = z* + ¢ then

e df
2! dx?

e d"f

- n+1 21
n! dx™| +0(e") (2.1)

* * _ ﬁ
flz"+¢e)— f(z")=¢ dm‘x—x* +

T=x =x*

If 2* is a local minimum of f on (a,b), then there must be an e-neighborhood of z* such
that for all z within a distance ¢,

flz) = f(a7) (2.2)
which implies that
df e? d*f e" dvf "
ik -2 = ntly > 9.
© dz e - 2! dz?| n! dz™| _ . +O0E) 20 (23)

Theorem 2.1 (Necessary Condition) Necessary conditions for z* to be a local mini-
mum (mazimum) of f on the open interval (a,b), providing that f is twice differentiable,
are that

df
1. L =
dl’ r=x* O
a2 f
— > <
dz?| ..~ 0(<0)

Definition 2.5 (Stationary Point) A stationary point is a point * at which

a

=0
d:L’x

=x*

Definition 2.6 (Inflection Point) An inflection point or saddle point! is a stationary
point that does not correspond to a local optimum (minimum or mazimum,).

'The term inflection point is preferred for single-variable functions, while saddle point is preferred for
multivariable functions
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Theorem 2.2 (Sufficient Condition) Suppose at a point x* the first derivative is zero
and the first nonzero higher order derivative is denoted by n.

(i) If n is odd, then x* is a point of inflection.
(ii) If n is even, then x* is a local optimum. Moreover,

(a) If that derivative is positive, then the point z* is a local minimum.

(b) If that derivative is negative, then the point x* is a local mazimum.

2.3 Region Elimination Methods

Theorem 2.3 (Elimination Property) Suppose f is strictly unimodal on the interval
la,b] with a minimum at x*. Let xy and xs be two points in the interval such that a <
x1 < x9 < b. Comparing the functional values at r1 and xo, we can conclude:

(1) If f(x1) > f(x2), then the minimum of f(x) does not lie in the interval [a,z1]. In
other words, =* € (z1,b]

(i1) If f(x1) < f(z2), then the minimum of f(x) does not lie in the interval [xq,b]. In
other words, * € |a,x3) (Figure 2.3)

(iti) When f(z1) = f(xs), we could eliminate both ends, [a,z;) and (zs,b], and the
minimum must occur in the interval [Ty, o]

The region elimination methods can be broken down into two phases
e Bounding Phase: An initial coarse search that will bound or bracket the optimum

e Interval Refinement Phase: A finite sequence of interval reductions or refinements
to reduce the initial search interval to desired accuracy

2.3.1 Bounding Phase
Assuming unimodality, the (k + 1)st test point is generated using the recursion
xk+1 = Tk + 2kA

for k =0, 1, 2, ...where x is an arbitrarily selected starting point and A is a step-size
parameter of suitably chosen magnitude.

o If f(zo — |A]) = f(zo) = f(2z0 + |A]) then A = |A|
o If f(zo — |A]) < Flzo) < f(0 + |A]) then A = —[A]

o If f(xg— |A]) > f(xy) and f(z0) < f(zo + |A]) then the minimum is bracketed
between zy — |A| and o + |A|.



Figure 2.3: Case (ii) of Theorem 2.3
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e The remaining case, f(zo — |A|) < f(zo) and f(zo) > f(xo + |A]), is ruled out by
the unimodality assumption.

Example 2.1 Starting with xy = 30 and |A| = 5, minimize

Bounding phase

f(@) = (100 — z)*

f(zo) = £(30) = 4900
Flao+|A) = f(35) = 4225
Flao—|A]) = f(25) = 5625

A=Al =+5 65 <" <185

Table 2.1: Bounding procedure

Eooxp flag)
0 30 4900
1 35 4225
2 45 3025
3 65 1225
4 105 25
5 185 7225

2.3.2 Interval Refinement Phase

Interval Halving (Three-Point Equal-Interval Search)
actly one-half the interval at each stage.
Let a, z1, x,,, 2, and b are equally-spaced:

Table 2.2: Interval halving

This Method deletes ez-

Cases a Z, b
f(z1) < flzn) < fla2) a T T
f(x1) = f(zm) > f(z2) Ty Ty b
f(x1) > f(z) and f(z,) < f(z) | 21 @p 2o
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Golden Section Search Figure 2.4

1. If only two trials are available, then it is best to locate them equi-distant from the
center of the interval.

2. In general, the minimax strategy suggests that trials be placed symmetrically in
the interval so that the subinterval eliminated will be of the same length regardless
of the outcome of the trials.

3. The search scheme should require the evaluation of only one new point at each step.

1—7=1?

! =0.61803 - - -

2.3.3 Comparison of Region-Elimination Methods

Fractional reduction FR(N) = Ly/L, where L; is the interval of uncertainty after
i functional evaluations (Figure 2.5).

e interval halving

e golden section search

e cxhaustive search

Common characteristics of interval halving & golden section searches
e requires unimodality, but not differentiability

e applicable to both continuous and discontinuous functions as well as to discrete
variables

e does not utilize the magnitude of the difference between the function values
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2.4 Polynomial Approximation or Point Estimation
Methods

Quadratic Estimation Methods For
q(x) = ag + ai(x — 1) + as(z — x1)(z — x9)
let fi = q(z1), fo = q(z2), and f3 = q(x3) then

= h 1 <f3_f1 )
= a —

To9 — T1 T3 — T9 \ T3 — 1

Clo:fl a1

and
) + T ay

2 2(12

T =

Powell’s Successive Quadratic Estimation Method Using z and the two points
bracketing Z, repeat quadratic estimation.

2.5 Methods Requiring Derivatives

Most single-variable optimization methods requireing derivatives are to find the solution
of the first-order necessary condition for optimality:

! *\ __ ﬁ .
2.5.1 Newton-Raphson Method
f'(zk)

Tpt1 = Tk — f”(l‘k)

2.5.2 Bisection Method

2.5.3 Secant Method

Ty =b—
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2.5.4 Cubic Search Method

Given cubic approximation

f(x) =ag+ai(x —z1) + ax(x — z1)(x — 22) + az(z — 71)*(z — x2)

where

o N1 _ar— f] it f 20
= Qg = ———— a3 = —F/——— 5
To — X1 To — T (29 — 1)

If f'(x1)f'(z9) <0, find Z such that f/(z) =0

aO:fl a

2.6 Comparison of Methods

e point estimation methods is intrinsically superior from a theoretical point of view

— without derivatives: Powell’s quadratic search exhibits superlinear convergence

— requiring first derivative: cubic search

e region-elimination methods: golden section search exhibits linear convergence

2.7 Assignments

2.7.1 Reading Materials
o Reklaitis, et. al.’s Chapter 2 [19]

e Edgar & Himmelblau’s Chapters 4 & 5 [5]
e Rao’s §2.1 — 2.2 & Chapter 5 [17]

e Chong & Zak’s Chapters 6 & 7 [4]
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