Chapter 1

Introduction

1.1 Requirements for the Application of Optimiza-
tion Methods

1.1.1 Defining the System Boundaries

e A system is the restricted portion of the universe under consideration.
e The system boundaries are simply the limits that separate the system from the

remainder of the universe.

1.1.2 The Performance Criteria

e economic criteria: total capital cost, annual cost, annual net profit, return on in-
vestment, cost-benefit ratio, net present value

e technological factors: minimum production time, maximum production rate, mini-
mum energy utilization, maximum torque, maximum weight

1.1.3 The Independent Variables

e distinguish variables whose values are amenable to change from

— variables whose values are fixed by external forces
— system parameters that can be treated as fixed and those that are subject to
fluctuations influenced by external and uncontrollable factors

e include all the important variables that influence the operation of the system or
affect the design definition

e another consideration in the selection of variables is the level of detail to which the
system is considered
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1.1.4 The System Model

The system model describes the manner in which the problem variables are related and
the way in which the performance criterion is influenced by the independent variables.

e basic material and energy balances
e engineering design relations

e physical property equations that describes the physical phenomena tanking place
in the system.

1.2 Application of Optimization in Engineering

1. Design of components or entire systems
2. Planning and analysis of existing operations
3. Engineering analysis and data reduction

4. Control of dynamic systems

1.2.1 Design Application

Example 1.1 (Design of an oxygen supply system) The basic ozygen furnace (BOF')
used in the production of steel is a large fed-batch chemical reactor that employs pure oxy-
gen. The furnace is operated in a cyclical fashion. Ore and fluxz are charged to the unit,
treated for a specified time period, and then discharged. The cyclical operation gives rise
to a cyclically varying demand rate for oxygen. As shown in Figure 1.2(a), over each
cycle there is a time interval of length t1 of low demand rate Dy and a time interval
(to — t;) of high demand rate Dy. The oxygen used in the BOF is produced in an orygen
plant, in a standard process in which oxygen is separated from air by using a combination
of refrigeration and distillation. Ozxygen plants are highly automated and are designed
to deliver oxygen at a fixed rate. In order to mesh the continuous oxygen plant with the
cyclically operating BOF, a simple inventory system shown in Figure 1.2(b), consisting of
a compressor and a storage tank, must be designed. A number of desige possibilities can
be considered. In the simplest case, the oxygen plant capacity could be selected to be equal
to Dy, the high demand rate. During the low-demand interval the excess oxygen could
just be vented to the air. At the other extreme, the oxygen plant capacity could be chosen
to be just enough to produce the amount of oxygen required by the BOF over a cycle.
During the low-demand interval, the excess oxygen produced would then be compressed
and stored for use during the high-demand interval of the cycle. Intermediate designs
could use some combination of venting and storage of oxygen. The problem is to select
the optimal design.
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System  consists of Oy plant, compressor, and storage tank

Performance index total annual cost consists of

e oxygen production cost (fized and variable) = a; + ayF[$/yr]
e fized costs of the storage vessel = b)V*[$] and compressor = byH" 3]

e compressor operating cost = bst1H|[$/yr]
Annual cost = ay + agF + d(b,V? + by H") + Nbst, H[$/yr]

Independent variables

e [ is the oxygen plant production rate, Ib Og/hr
e H is the compressor capacity, hp
o V is the storage tank capacity, ft3

e p is the mazimum tank pressure, psia

System model  Assume that

e the oxygen plant design is standard so that the production rate fully characterizes
the plant, and

e the storage tank will be of a standard design approved for Oy service.
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where

e ky is a unit conversion factor
e ky is the compressor efficiency

o M is the molecular weight of O,

po s the Oy delivery pressure

R is the gas constant

T is the gas temperature (assumed to be fized)

z s the compressibility factor
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1.2.2 Operation and Planning Application
1. Accommodate increased production throughput
2. Adapt to different feedstocks or different product slate
3. Modify the operations because the initial design is itself inadequate or unreliable

Example 1.2 (Refinery Production Planning) A refinery processes crude oils to pro-
duce a number of raw gasoline intermediates, which must subsequently be blended to make

to grades of motor fuel, regular and premium. Fach raw gasoline has a known perfor-

mance rating, a maximum availability, and a fired unit cost. The two motor fuels have

a specified minimum performance rating and selling price, and their blending is achieved

at a known unit cost. Contractual obligations impose minimum production requirements

of both fuels. However, all excess fuel production or unused raw gasoline amounts can be

sold in the open market at known prices. The optimal refinery production plan is to be

determined over the next specified planning period.

Independent variables Let

xr; = amount used for reqular, Mbbl/period
y; = amount used for premium, Mbbl/period
zi = amount sold directly, Mbbl/period
u; = amount allocated to contract, Mbbl/period
v; = amount sold in open market, Mbbl/period
System model
1. Material balances on each intermediate v = 1,...,5:

i +yi+z <oy
where «; is the availability if intermediate i in Mbbl/period.

2. Material balances on each product:

Z$i=U1+Ul Zyizu2+v2

3. Blending constraints on each product
> Bixi > y(uy +v1) > By = va(ug + vs)

where B; is the performance rating of intermediate ¢, and ; is the minimum per-
formance rating of product j.

4. Contract sales restrictions for each product j.

’LL]‘Z(S]'
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Performance Criterion (net profit) is given by
zZ=> Cgl)Uj +> 05-2)1@- +> ¥z — > (@i + 4+ 21) — > (i + i)
] ] i i i

where
cgl) = wunit selling price for contract sales of j
c§~2) = unit selling price for open market sales of j
CES) = unit selling price of direct sales of intermediate 1
c§4) unit charge cost of intermediate i
055) = blending cost of intermediate 1
Table 1.1: Data for Example 1.2
Raw Availability  Performance Selling Charged Blending
Gasoline o Rating, Price Cost Cost
Intermediate (bbl/period) Bi 023) 054) 055)
1 2 x 10° 70 30.00 24.00 1.00
2 4 x 10° 80 35.00 27.00 1.00
3 4 x 10° 85 36.00 28.50 1.00
4 5 x 10° 90 42.00 34.50 1.00
5 5 x 10° 99 60.00 44.00 1.00
Minimum Minimum Selling Price ($/bbl)
Product Contract Performance Contract Open Market
Type Sales 9, Rating cgl) cl(?)
Regular (1) 5 x 10° 85 $40.00 $46.00
Premium (2) 4 x 10° 95 $55.00 $60.00

Optimal solution Z* = $28M when

0 0 0.2
% 04 . 0 « 0 . 0.5 . 0.55
x =1 04 y = 0 z =1 0 u:<04> v:(035)
1/6 1/3 0 ’ ’
1/12 5/12 0

1.2.3 Analysis and Data Reduction Applications
For a given system model

Yy = f(X; 91,92, .. )

the unknown parameters 6, 65, ...can be determined if enough set of data (z;,v;), i =
1,...,n is given.
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Least squares criterion

mlnL 91,92,... Z xl;91,92,...) —yZ]Q
i=1
Example 1.3 (Nonlinear Curve Fitting) Determine the parameters in the semiem-
pirical Redlich-Kwong equation of state for a set of given PvT data.

System model
RT a

P(v,T;a,b) = —
<U7 7a7) ’U—b \/T’U(’U—}—b)

Independent variables a, b

Performance index

oo

8 .
min f(a,b) = Z (vi, Tj; a,b) — P}sz R, a

— — P, 1.1
i—1 o lvi—b VTvi(v; + b) (1)

Table 1.2: PvT data for CO,

Experiment P v T
Number  atm cm?/gmol K

1 33 500 273

2 43 500 323

3 45 600 373

4 26 700 273

5 37 600 323

6 39 700 373

7 38 400 273

8 63.6 400 373

1.2.4 Control of Dynamic Systems

Example 1.4 (Optimal Control of Batch Reactor) A high-priced specialty chemi-
cals is made in a batch reactor. The reactions of interest are

R M p

R, w

where R is an expensive raw material, P is the product, and W is a waste byproduct.
Both reactions are irreversible and first-order in species R.
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System model The velocity constants ki and ks are give by
ki = ke BRI =1, 2
Material balances on species R and P in the batch reactor are

R(t) = — (ki + k2)R(2)

P(t) = k1 R(¢)
W (t) = Ry — R(t) — P(t)
R(0) = Ry
P0)=0
Independent variable T'(t) As a control engineer you have been asked to design a

temperature control program for the batch reactor to be carried out over a given batch
time, namely t¢, and which mazimizes the amount of P produced at the end of the run.

Performance index the amount of P produced att =ty

max Pt )

1.3 Structure of Optimization Problems

Optimization problem

subject to
hi(x) =0 k=1,...,K
9i(x)=0  j=1,....J
xEU) >z > xEL) 1=1,...,N
where
e f,,s=1,..., M are objective functions

e h; = 0 is equality constraint

e g; > 0and :L'Z(U) >z > :L‘Z(L) are inequality constraints
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1.3.1 Classification of Optimization Problems

If M =1, the problem has single objective, and simply called optimization problem
If M > 2 then the problem is called multiobjective optimization (MOQ) problem.

If N =1 then the problem is called single variable optimization problem. If N > 2
then the problem is called multivariable optimization problem.

If all z;’s are either 0 or 1 then the problem is called binary programming problem;
if they are integers then integer programming (IP) problem; and if some of z;’s are

integers and the rests are reals then the problem is called mized integer programming
(MIP) problem.

If J =K =0and :rZ(U) = -3 = 0o for all i = 1,..., N the problem is called

(3
unconstrained problem, otherwise it is called constrained optimization problem.

If all f, hy’s, and g;’s are linear w.r.t. x then the problem is called linear pro-
gramming (LP) problem. If f is quadratic but all h;’s and g;’s are linear, then
the problem is called quadratic programming (QP) problem. Otherwise it is called
nonlinear programming (NLP) problem.

If f is convex', all hy’s are linear, and all g;’s are concave?, then the problem is
convez, otherwise it is nonconver.

1.3.2 Unsolvable or Trivial Problems

For a constrained problem, there does not exist any x that satisfies all the con-
straints simultaneously, the the problem is said to be infeasible. If K > N the
problem has high chance of being infeasible.

If the optimum is not bounded then the problem is said to be unbounded.

If K = N, generally the solution is determined uniquely by the equality constraints.

1.4 Assignments

1.4.1 Reading Materials

Reklaitis et. al.’s Chapter 1 [19]
Edgar & Himmelblau’s Part I [5]
Rao’s Chapter 1 [17]

1
2

concave for maximization
convex for g; <0
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