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2.6 Numerical Linear Algebra

For A x = b,

Structure of A :

• full: almost all {aij} are nonzero.

• sparse: almost all {aij} are zero. sparse if more than 90% are zero.

Methods :

• direct: finite (predetermined) number of operation gives answer.

• iterative: method converges asymptotically.

As n → ∞, solution converges.

Error :

• direct: precision error (machine accuracy)

• iterative: convergence error (depending on algorithm) + precision error

How to decide method :

1. Robustness (stability, convergence)

2. Storage requirement

3. Computational work

Computational work : operation count

• solution of upper triangular matrix

U x = b

U11x1+ U12x2+ · · ·+ U1nxn = b1

U22x2+ · · ·+ U2nxn = b2
... =

...

Un−1,n−1xn−1+ Un−1,nxn = bn−1

Un,nxn = bn
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Back-substitution:

xi =
bi − ∑n

k=i+1 Uikxk

Uii

, i = n, n − 1, . . . , 1

For each i,

1 division

n − i addition

1 subtraction

n − i multiplication

work = n +
n∑

i=1
(n − i)

= n + n2 − n(n + 1)
2

∝ n2

2
∼ O(n2)

• Multiplication of two matrices

For C = A B

i, j

s = 0
 k = 1, . . . , n

s = s + aikbkj

cij = s

FLOP = floating-point operations

s = s + aikbkj : O(n3) FLOPS

• Gaussian elimination



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44







x1

x2

x3

x4



=




b1

b2

b3

b4






Num Meth Chem Engrs, Prof. Do Hyun Kim, KAIST 29

J21

(
−a21

a11

)
=




1 0 0 0

−a21
a11

1 0 0

0 0 1 0

0 0 0 1




J41

(
−a41

a11

)
J31

(
−a31

a11

)
J21

(
−a21

a11

)

= A(2)

=




a
(2)
11 a

(2)
12 a

(2)
13 a

(2)
14

0 a
(2)
22 a

(2)
23 a

(2)
24

0 a
(2)
32 a

(2)
33 a

(2)
34

0 a
(2)
42 a

(2)
43 a

(2)
44




where

a
(2)
22 = a22 − a12

a11
a12

Number of operations

O(n3) for matrix multiplication
1
2n

2 times matrix multiplication

→ total transformation for GE needs ∼ 1
2n

5.

Cost of sparse matrix multiplication J
ij
A <=> O(n)

Cost of Gaussian elimination <=> O(n3)

Back-substitution <=> O(n2): insignificant to cost of GE

Linear equation solver :

1. Gaussian elimination

A x = b → U x = b̂

2. LU-decomposition

A → L U

Two problems :

1. A
i
x = bi where i = 1, . . . , m.

Both type 1 and 2 are OK.
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2. A
o
x = bi

LU-decomposition is superior.

L U x = bi

(a) L z = b → solve lower triangular set.

(b) U x = z → solve upper triangular set → x.

Theorem Let A ∈ �n×n and let A
k
be �k×k matrix formed by the intersection

of first k rows and k columns of A. If det(A
k
) 
= 0, k = 1, . . . , n − 1, then

a unique L exists with Lij = mij and mii = 1 and a unique U exists with

Uij = uij.

Proof Suppose the theorem holds for n = k − 1.

A
k
=


 A

k−1 b

cT akk


 ∈ �k×k

L
k
=


 L

k−1 0

mT 1




U
k
=


 U

k−1 u

0T ukk




Find m, u, and ukk.

L
k
U

k
=


 L

k−1Uk−1 L
k−1u

mT U
k−1 mT u + ukk


 = A

k

Equate

1. A
k−1 = L

k−1Uk−1: OK

2. b = L
k−1u → solve for u.

3. cT = mT U
k−1 → solve for m.

4. mT u + ukk = akk → solve for ukk.
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Pivoting When does GE breaks down? a
(k)
kk = 0

Pivoting: To prevent problems with zero pivot. Search the column and move

the row with largest figure top in the unfinished part during GE.

• Partial pivoting

|a(k)
rk | = max

k≤i≤n
|a(k)

ik |

• Full pivoting

|a(k)
rk | = max

k≤i≤n
k ≤ j ≤ n

|a(k)
ij |

If matrix is singular, zero pivot moves to a(n)
nn position.

When we don’t have to pivot?

1. Diagonally dominant matrix

|aii| >
n∑

j=1
j �= i

|aij|

2. Symmetric and positive definite matrix

AT = A, xT A x > 0 ∀x ∈ �n

Theorem A diagonally dominant matrix A satisfies

1. Each princial minor of A is diagonally dominant

2. A is non-singular.

Sparse matrix :

• Banded structure

• Unstructured

Pivoting of banded matrix

Partial pivoting is OK

Full pivoting is not OK (It destroys the band structure).
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2.7 Error Analysis for Linear Systems

Residual vector Residual vector r = b − A x

When r = 0 → A x = b

When ‖r‖ � 1 → A x ∼= b

Example For the following matrix A and vector b

A =


 1.2969 0.8648

0.2161 0.1441


 , b =


 0.8642

0.1440




The solution and residual vector are

x =


 0.9911

−0.4870


 , r =


 10−8

−10−8




It looks reasonable. But, the exact solution is

xexact =


 2

−2




During Gaussian elimination


 1.2969 0.8648

0.2161 0.1441

∣∣∣∣∣∣
0.8642

0.1440




→

 1.2969 0.8648

0 10−8

∣∣∣∣∣∣
0.8642

−2 × 10−8




Perturbation analysis for A x = b

Consider

A(x + δx) = b + δb

Then

Aδx = δb → δx = A−1δb → ‖δx‖ ≤ ‖A−1‖‖δb‖
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A x = b → ‖b‖ ≤ ‖A‖‖x‖ → 1
‖x‖ ≤ A

‖b‖

Then,

‖δx‖
‖x‖ ≤

[
‖A‖‖A−1‖

] ‖δb‖
‖b‖

[‖A‖‖A−1‖] is the condition number and bounds relative error in x wrt

relative error in b. Condition number has the following relation.

κ(A) = ‖A‖‖A−1‖ ∼ λmax
λmin

Example For the example above

A−1 = 108


 0.1441 −0.8648

−0.2161 1.2969




‖A‖∞ = max
i=1,2

2∑
j=1

|aij| = 2.1617

‖A−1‖∞ = 1.5130 × 108

Then,

κ(A) = 3 × 108

For your reference, λmax = 1.4410, λmin =∼ 10−8.


