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2.2 Linear Vector Space

2.2.1 Linear vector space

Def A set V is defined as a linear vector space over a scalar field F , if the

operation of addition is defined for members of V and multiplication of

elements of V by an element of the field F is defined. That is,

1. If x ∈ V, y ∈ V, then x + y ∈ V and unique.

2. If x ∈ V, α ∈ F , then αx ∈ V.

These operations must obey the following properties.

1. x + y = y + x

2. (x + y) + z = x + (y + z)

3. There is a unique vector 0 in V , called zero vector, such that

x + 0 = x for all x ∈ V

4. For each vector x ∈ V, there is a unique vector −x such that

x + (−x) = 0

5. 1x = x for all x ∈ V.

6. If α, β ∈ F , then α(βx) = (αβ)x for all x ∈ V.

7. If α ∈ F , x, y ∈ V, then α(x + y) = αx + αy

8. If α, β ∈ F , x ∈ V, then (α + β)x = αx + βx

Example

• �n: Collection of all n-dimensional vectors with real components

• Cn: Collection of all n-dimensional vectors with complex components

• �m×n: Collection of all m × n matrices with real components
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2.2.2 Linearly independent set

Def A set of vectors {xi} ∈ �n is said to be linearly dependent if there exists

n scalars {αi} ∈ �, such that

α1x1 + α2x2 + · · · + αnxn = 0

where not all of the {αi} are zero.

If no such set of scalars exists, the vectors {xi} are linearly independent.

For linearly dependent set, one of the vectors can be written as a linear

combination of the other elements in the space.

x1 = − 1
α1

n∑
j=2

αjxj

Example in �3

Most obvious example of a linearly independent set

eT
1 = (1, 0, 0)

eT
2 = (0, 1, 0)

eT
3 = (0, 0, 1)

These are called base vectors or basis.

Example in �2×2

Basis


 1 0

0 0


 ,


 0 1

0 0


 ,


 0 0

1 0


 ,


 0 0

0 1




2.2.3 Subspace

Def Let W be a non-empty subset of �n. Then, W is a subspace of �n if

1. x, y ∈ W implies (x + y) ∈ W
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2. x ∈ W and α ∈ � implies αx ∈ W.

Ex 1: All vectors of the form xT = (α1, α2, . . . , αr, 0, . . . , 0). (last n − r

elements of the vector are zero).

Ex 2: All 2 × 2 matrices that are symmetric. W is a subset of �2×2.

Theorem Let A be a set of vectors in �n and let W be the set of all linear com-

bination of elements in A, Then, W is a subspace of �n and each elements

in W is written as

y = α1x1 + α2x2 + · · · + αmxm

where {xi} ∈ A, can {αi} ∈ �.

Def Let W ⊂ �n be a subspace and let B a set of vectors from �n. Then B is a

basis for W if

1. the elements of B are linearly independent

2. B spans or generates W , that is each vector in W is a linear combination

of elements of B.

Def If W is a subspace of �n, the dimension of W is the number of elements in

a basis for W .

Theorem The dimension of a subspace W is unique even though the components

of the basis are not.

2.2.4 Linear dependence

Linear dependence of a set of n vectors:

For (a1, a2, . . . , an) (each ai ∈ �n) and for a set of numbers {αi} ∈ �,

a1α1 + a2α2 + · · · + anαn = 0

where each vector ai can be written as

aT
i = (a1i, a2i, . . . , ani)
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Then,




a11

a21
...

an1




α1 +




a12

a22
...

an2




α2 + · · · +




a1n

a2n

...

ann




αn =




0

0
...

0




In matrix form




a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

an1 an2 · · · ann







α1

α2
...

αn



=




0

0
...

0




or

A α = 0

That is, linear dependence ≡ nontrivial solution (other than α = 0) of homoge-

neous linear equation

case I If rank(A) = n, the inverse matrix is well-defined and α = 0 is the unique

solution −→ {ai} is linearly independent

case II For the matrix with rank(A) = n − 1

Assume an ordering




a11 a12 · · · a1,n−1 a1n

a21 a22 · · · a2,n−1 a2n

...
... . . . ...

...

an−1,1 an−1,2 · · · an−1,n−1 an−1,n

an1 an2 · · · an,n−1 ann







α1

α2
...

αn−1

αn




=




0

0
...

0

0



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For submatrix Ã,

Ã =




a11 a12 · · · a1,n−1

a21 a22 · · · a2,n−1
...

... . . . ...

an−1,1 an−1,2 · · · an−1,n−1




det(Ã) �= 0 −→ Ã
−1

exists.

Neglecting the last row,

Ã




α1

α2
...

αn−1



= −αn




a1n

a2n

...

an−1,n




−→ Assume αn, then we can determine α1, . . . , αn−1.

−→ Then,

a1α1 + · · · + an−1αn−1 + anαn = 0

−→ an is a linear combination of the first n − 1 vectors.

That is, {ai} is linearly dependent

2.3 Linear Transformation and Linear Equa-

tion Sets

2.3.1 Linear transformation

n × m matrix • transformation that takes an element of �m into an element

of �n.

• has the properties of linear transformation
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Def A linear transformation from �m to �n is a matrix A : �m → �n such that

A(αx + βy) = αA x + βA y

where x, y ∈ �m, α, β ∈ �.

2.3.2 Range and null space

Def If A ∈ �n×m, the subspace of �n spanned by the columns {ai}, i = 1, . . . , m

of A is called the range of A and is written as R(A).

dim(R(A)) = number of linearly independent columns of A

Def For A ∈ �n×m, the null space of A, N (A), is the subspace of �m formed by

all vectors, x such that A x = 0.

dim(N (A)) = dimension of the basis of N (A)

2.3.3 Homogeneous equation set

For homogeneous equation set A x = 0, following theorem holds.

Theorem If A ∈ �n×m, the null space of A, N (A), has dim(N (A)) = m − r

where r = rank(A). If r = m, then x = 0 is the only solution.

2.3.4 Nonhomogeneous equation set

Theorem Let A ∈ �n×m and A = (a1, a2, . . . , am) where ai ∈ �n.

Then, A x = b, where b ∈ �n, has a solution x ∈ �m (i.e., is soluble) iff

dim(a1, a2, . . . , am, b) is equal to dim(R(A)). That is b is a linear combina-

tion of {ai}.

Theorem Let A ∈ �n×m. If b ∈ R(A) and dim(R(A)) = m, then A x = b

possesses a unique solution.
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Theorem Let A ∈ �n×m and b ∈ R(A). If rank(A) = r < m, then A x = b has

the general solution x = xo + z where xo is a particular solution of A x = b

and z is any solution of the corresponding problem A x = 0. i.e. z ∈ N (A)

where dim(N (A)) = m − r.


