Chapter 7. Cohesive properties and Solubility

p.190

o Cohesive energy density, $e_{coh} = \frac{E_{coh}}{V}$ (J/cm³)

ο Solubility parameter, $\frac{E_{coh}}{I}$ ^{1/2} Hildebrand

ο Determination of Ecoh :

- For liquids of low molecular weight, the cohesive energy is closely related to the molar heat of evaporation, ∆H_{vap} (at a given temp)

즉 Ecoh = ∆Uvap = ∆Hvap - P∆V ≈ ∆Hvap – RT (7.1)

- Polymers degrade long before reaching their vaporization temp., making it impossible to evaluate ΔE_v directly.

- The great tendency of a polymer to dissolve occurs when its solubility parameter matches that of the solvent.

P190 ο Predition of the cohesive energy by means of additive functions.

(Method 1) Group contribution to Ecoh (see Table 7.1)

(Method 2) Group contribution to F (see table 7.2) (molar attraction const), $F = [E_{coh} V(298)]^{-1/2}$

P194

(Ex 7.1) estimate the cohesive energy of Poly(butyl methacrylate).

(a) Group contribution (by van krevelen) From Table 7.1

(b) According to Small's method, from Table 7.2.

(a) Ecoh = 43,870 (J/mol)
(b) Ecoh =
$$
\frac{F^2}{V} = \frac{(2408)^2}{136} = 42,700
$$
 (J/mol)

B.Solubility

- According to Hildebrand, the entalpy of mixing can be calculated by

$$
\Delta H_{\rm m} = \phi_1 \phi_2 (\delta_1 - \delta_2)^2 \tag{7.3}
$$

여기서 ΔH_m = entalpy of mixing per unit volume,

$$
\Delta G_m = \Delta H_m - T \Delta S_m
$$

-two substance are mutually soluble if ΔG_m is negative -the requirement of mutual solubility : $(\delta_P - \delta_S)^2$ has to be small;

p202

P203

- Burrell 은 solvent 의 hydrogen bonding 을 poorly, moderately, 그리고 strongly 한것으로 나누었다.(Table 7.6)

p204

ο Refinements of the solubility parameter concept.

- In Eq (7.3), $\Delta H_m = \phi_1 \phi_2 (\delta_1 - \delta_2)^2$, only dispersion forces have been taken into account.

- Cohesive energy is also dependent on the interaction between polar groups and on hydrogen bonding.

- Three type of interaction forces,

$$
E_{\rm coh} = E_d + E_p + E_h
$$

\n
$$
\delta^2 = \delta d^2 + \delta p^2 + \delta h^2
$$
\n(7.4)

⁻ By burrell, mutual solubility only occurs if the degree of hydrogen bonding is about equal.

- by hansen, the value of δ_d of a given solvent was assumed to be equal to that of a non-polar substance.

$$
\delta p^2 + \delta h^2 = \delta^2 - \delta d^2 (= \delta a^2)
$$

o solvent 의 δ_d , δ_d , δ_h are shown in pages $\frac{776 - 789}{ }$

ο Polymer 의 δ 는 Table 7.5 $δ_d, δ_p, δ_h \stackrel{\text{L}}{=}$ Table 7.7

p211

ο Predition of the solubility parameter components of diacetone alcohol.

(Ex7.2) Estomate the solubility parameter components of diacetone alcohol,

$$
H_3C-C-H_2C-C-H_3
$$
\n
$$
H_3C-C-H_2C-C-H_3
$$
\n
$$
H_3C-C-H_2C-C-H_3
$$

 (sol) v= 123.8 (cm^3/mol) table 7.8 과 Eq. (7.10), (7.11), (7.12)로부터,

$$
\delta_{\rm d} = \frac{\sum F_{di}}{V} = \frac{1960}{123.8} = 15.8 \quad \text{(J}^{1/2}/\text{cm}^{3/2})
$$

$$
\delta_{\rm p} = \frac{\sqrt{\sum Fpi^{-2}}}{V} = \frac{\sqrt{84300}}{123.8} = 7.4 \, (\text{J}^{1/2}/\text{cm}^{3/2})
$$

$$
\delta_{\rm h} = \sqrt{\frac{\sum E_{hi}}{V}} = \sqrt{\frac{22000}{123.8}} 13.3 \, \left(\frac{\text{J}}{2} / \text{cm}^{3/2} \right)
$$

문현치 (literature value)는 가각
\n
$$
\delta_d
$$
= 15.7, δ_p = 8.2, δ_h = 10.9

$$
\therefore \delta = \sqrt{\delta d^2 + \delta p^2 + \delta h^2} = 21.9 \, (J^{1/2} / \text{ cm}^{3/2}) \qquad \text{or} \quad (J/\text{cm}^3)^{1/2}
$$
\n
$$
\delta_{\text{exp}} = 18.8 - 20.8 \, (J/\text{cm}^3)^{1/2}
$$