초록 |
Ge2Sb2Te5-based phase-change memories (PCMs), which undergo fast and reversible switching between amorphous and crystalline structural transformation, are being utilized for nonvolatile data storage. However, a critical obstacle is the high programming current of the PCM cell, resulting from the limited pattern-size of the optical lithography-based heater. Here, we suggest a novel and facile strategy of utilizing self-structured conductive filament (CF) nanoheaters for Joule heating of chalcogenide materials. This CF nanoheater can replace the lithographical-patterned conventional resistor-type heater. The sub-10 nm contact area between the CF and the phase-change material achieves significant reduction of the reset current. In particular, the PCM cell with a single Ni filament nanoheater can be operated at ultra-low writing current of 20 A. Finally, phase-transition behaviors through filament type nanoheaters were directly observed by using transmission electron microscopy. |