Mn Layered Structure Catalysts for Low Temperature NH₃ Selective Catalytic Reduction <u>윤원근</u>, 배영규¹, 김영민¹, 채호정¹, 김원배[†] 포항공과대학교; ¹한국화학연구원 (kimwb@postech.ac.kr[†]) In this study, Mn layered structure catalysts are prepared by co-precipitation method and they are used as catalysts for low temperature NH₃ selective catalytic reduction. The Mn catalysts are characterized by X-ray diffraction, Brunaurer-Emmett-Teller analysis, NH₃-temperature programed desorption, H₂-temperature programed reduction and X-ray photoelectron spectroscopy. The prepared Mn layered structure oxide was explored as a catalyst, resulted in an outstanding deNO_x performance under 200 °C with a GHSV of 60,000 h⁻¹. Moreover, the outstanding H₂O and SO₂ resistance of Mn layered structure catalysts was also obtained. The enhanced NO_x removal performance at low temperature suggests that Mn layered structure catalysts could be a promising catalyst for NH₃-SCR processes.