Methane oxidation over Pd-Pt/Al₂O₃ supported on alumina: impact of Pt-Pd ratio and reaction environment

The activation of CH₄ over monometallic PGM catalysts normally requires high reaction temperatures above 500 °C. Moreover, modern engines emit lower temperature of exhaust gases. This also makes the CH₄ oxidation challengeable since the intrinsic activity of PGM catalysts is strongly sensitive to the O₂ concentration. In this study, we prepared seven Pd–Pt catalysts supported on γ -alumina as a function of Pd:Pt ratio while fixing a total number of Pd, Pt metal (350 µmol/g.cat). The CH₄ oxidation was tested with respect to the O₂/CH₄ ratio varying O₂ concentration. The catalysts were also tested under the dry and wet feed to characterize the inhibition of water. The Pd-rich catalysts represented the light off curves at lower temperature region at around 300 °C. The inhibition of water on the CH₄ oxidation was more pronounced over the Pd–only catalysts, while the Pd:Pt–3:1 catalysts showed a superior overall activity against the presence of hydroxyl group on catalytic surfaces. The beneficial effect of Pt presented in the bimetallic Pd/Pd catalyst may be attributed to the increased adsorption stability for methane under the wet condition.