1062

Enzymatic CO₂ utilization for producing versatile formate

<u>김길환</u>, 박권우¹, 문명훈¹, 이준표¹, 이진석¹, 이원흥², 민경선^{1,†} 한국에너지기술연구원/전남대학교; ¹한국에너지기술연구원; ²전남대학교 (min4605@kier.re.kr[†])

Abstract

Due to climate change and global warming, carbon dioxide (CO_2) utilization is an interesting research topic. Among chemicals obtained from CO_2 , formate is of our interest based on its versatility applicable for various industrial fields such as H₂-storage. Thus, we aimed to explore efficient formate dehydrogenase (FDH) that is capable of catalyzing CO_2 reduction to formate. Through genome mining and phylogenetic analysis, 3 kinds of FDHs was newly discovered and then successfully expressed in *Escherichia coli*. As a result, the newly discovered FDHs catalyze both CO_2 reduction and formate oxidation. Additionally the optimum conditions were investigated; pH 7 and 35 °C for CO_2 reduction and pH 9 and 35 °C for formate oxidation. Furthermore, kinetic parameters were determined. The results of this study might suggest that the newly discovered FDHs can be used for constructing biocatalytic CO_2 utilization system for producing formate in near future.