ZnFe₂O₄ Dendrite-SnO₂ Helix 3D Hetero-Structure Photoanodes for Enhanced Photoelectrochemical Water Splitting

<u>김정훈</u>, 최일용¹, 김진현, 김종규¹, 이재성[†] UNIST; ¹POSTECH (jlee1234@unist.ac.kr[†])

ZnFe₂O₄ is a promising photoanode material for photoelectrochemical (PEC) water splitting due to its narrow bandgap and suitable band position for water oxidation. However, its performance is limited because it has its indirect bandgap and poor charge transport properties. Helix structured SnO₂ is employed as an electron transport layer for efficient utilization of long-wavelength photons and enhanced charge transport. Thus, helix SnO₂ forms a heterojunction with ZnFe₂O₄ dendrite to scatter light and allow photons to travel longer distances for effective attenuation. As a result, ZnFe₂O₄/helix SnO₂ shows a seven-fold increase in IPCE at 530 nm relative to unmodified ZnFe₂O₄. With further modifications with a TiO₂ passivation layer and a NiFeO_x co-catalyst, NiFeO_x/TiO₂/ ZnFe₂O₄/helix SnO₂ photoanode records a water oxidation photocurrent of 0.94 mA/cm² at 1.23 V_{RHE} under simulated 1 sun conditions, which is comparable to the performance of reported state-of-the-art of ZnFe₂O₄ photoanodes.