A Novel Metallic Using Metal-Organic Framework for Electrochemical Reduction of CO_2 to CO

<u>Tran Van Phuc</u>, Jana Jayasmita¹, Huynh Ngoc-Diem¹, R.Nivetha¹, 허승현^{1,†} 울산대학교; ¹University of Usan (sshur@ulsan.ac.kr[†])

Cu-MOF74 has several advantages, including uniformly distributed bimetallic ions, less tendency towards aggregation, and more stable interfacial sites than Zn-MOF74. In this study, Cu-MOF74, and Zn-MOF74 were synthesized using nitrate salt of Cu and Zn combine with 2,5-dihydroxyterephtalic acid (H₄DOBBDC) were dissolved in DMF with stirring, and after that addition of DI water. The electrochemical reduction CO₂ (ERC) was taking place on an H-type cell in a 0.1 M KHCO₃ aqueous solution. The efficiency of Cu-MOF74 exhibited excellent electrochemical CO₂ reduction properties, including high CO selectivity (~ 85%) and low overpotential (< -1.9 V) than Zn-MOF74.

Keywords: Metal-organic framework (MOF-74), Electrocatalyst, Electrochemical reduction CO_2 (ERC).